Distributed metadata datapath for Openvswitch Agent

RFE: https://bugs.launchpad.net/neutron/+bug/1933222

When instances are booting, they will try to retrieve metadata from Nova by the path of Neutron virtual switches(bridges), virtual devices, namespaces and metadata-agents. After that, metadata agent has no other functionalities. In large-scale scenarios, a large number of deployed metadata agents will cause a waste of resources for hosts and message queue. Because metadata agents will start tons of external processes based on the number of users’ resources, report state to Neutron server for keepalive.

We are going to overcome this. This spec describes how to implement an agent extension for Neutron openvswitch agent to make the metadata datapath distributed.

Problem Description

How many metadata-agent should run for a large scale cloud deployment? There is no exact answer to this question. Cloud operators may setup metadata agent to all hosts, something like DHCP agent.

Config drive 1 can be an alternative for clouds to supply metadata for VMs. But there are some limitations and security problem for config drive. For instance, if you set config drive to use local disk, the live migration may not be available. Config drive uses extra storage device and mounting it inside VMs. Can not change userdata online for users specific scripts. The security issue is that because the mounting FS can be access by all users, if the metadata includes root password or key, the password and the key can be accessed by none root users.

If you are running Neutron agents, there is no alternative to replace metadata agent for cloud deployments.

As we can see, the metadata datapath is very long via many devices, namespaces and agents. One metadata path goes down, such as agent down or external process dead, will not only influence the host, but also all related hosts that will boot new VMs on.

Proposed Change

Adds an agent extension for Neutron openvswitch agent to make the metadata datapath distributed.


This extension is only for openvswitch agent, other mechanism drivers will not be considered, because this new extension will rely on the openflow protocol and principle.

Solution Proposed

Metadata Special purpose IP and MAC

Each VM in one host will generate a Meta IP + MAC pair which is unique among VM on a host and which will be used to identify the metadata requestor vm/port. The agent extension will do the generation work when handle port in the first time, and store the Meta IP + MAC to ovsdb. When ovs-agent is restarting, handle_port funtion will try to read the ovsdb first to reload the Meta IP + MAC, if not exist, re-generate.

During the agent extension initialization, it will add a internal port named “tap-meta” to the ovs-bridge br-meta. This tap device will have a Meta Gateway MAC + IP.

Potential Configrations

Config options for Neutron openvswitch agent with this extension:

provider_cidr =
provider_vlan_id = 998
provider_base_mac = "fa:16:ee:00:00:00"
  • provider_cidr will be used as the IP range to generate the VM’s metadata IP.

  • provider_vlan_id will be a fixed vlan for data from local tap-meta dev.

  • provider_base_mac will be the MAC prefix to generate the VM’s META MAC.

We can reuse the existing config option from metadata agent:

               help=_("Certificate Authority public key (CA cert) "
                      "file for ssl")),
                       help=_("IP address or DNS name of Nova metadata "
                help=_("TCP Port used by Nova metadata server.")),
               help=_('When proxying metadata requests, Neutron signs the '
                      'Instance-ID header with a shared secret to prevent '
                      'spoofing. You may select any string for a secret, '
                      'but it must match here and in the configuration used '
                      'by the Nova Metadata Server. NOTE: Nova uses the same '
                      'config key, but in [neutron] section.'),
               choices=['http', 'https'],
               help=_("Protocol to access nova metadata, http or https")),
    cfg.BoolOpt('nova_metadata_insecure', default=False,
                help=_("Allow to perform insecure SSL (https) requests to "
                       "nova metadata")),
               help=_("Client certificate for nova metadata api server.")),
               help=_("Private key of client certificate."))

Basic backend config with http for haproxy will be:

backend backend_{{ instance_x.uuid }}_{{ metadata_ip_x }}
server metasrv http://nova_metadata_host:nova_metadata_port

In haproxy side if ssl verify is enabled, the backend will be:

backend backend_{{ instance_x.uuid }}_{{ metadata_ip_x }}
server metasrv https://nova_metadata_host:nova_metadata_port ssl verify required ca-file /path/to/auth_ca_cert

Or ssl with client certificate:

backend backend_{{ instance_x.uuid }}_{{ metadata_ip_x }}
server metasrv https://nova_metadata_host:nova_metadata_port ssl verify required ca-file /path/to/nova_client_cert crt /path/to/nova_client_priv_key


If the cloud has its own client certificate, the crt parameter can point to your client certificate file. But this is supported since haproxy version >= 2.4.

Metadata data pipelines

Sample Resource Datas
  • VM1 - network1 local_vlan_id=1, fixed_ip, port mac fa:16:3e:4a:fd:c1, Meta_IP, Meta_MAC fa:16:ee:00:00:11

  • VM2 - network2 local_vlan_id=2, fixed_ip, port mac fa:16:3e:4a:fd:c2, Meta_IP, Meta_MAC fa:16:ee:00:00:22

  • VM3 - network1 local_vlan_id=1, fixed_ip, port mac fa:16:3e:4a:fd:c3, Meta_IP, Meta_MAC fa:16:ee:00:00:33

  • VM4 - network3 local_vlan_id=3, fixed_ip, port mac fa:16:3e:4a:fd:c4, Meta_IP, Meta_MAC fa:16:ee:00:00:44

  • META Gateway IP, META Gateway MAC: fa:16:ee:00:00:01

TCP Egress

HTTP request packets from VM direct to br-meta, and change IP headers to tap-meta, add HTTP headers in host haproxy then go to nova-metadata API. Datapath:

+----+ TCP +-----------------------------------+ TCP +---------------------------------------------+ TCP +------------------------+ TCP +-----------------------+
|    +----->             Br-int                +----->                   Br-meta                   +----->        tap-Meta        +----->        Haproxy        |
| VM |     | From VM port + |     |   Source (VM MAC + IP --> Meta MAC + IP)    |     |  Meta Gateway MAC + IP |     |   Match Meta IP       |
|    |     |          add local vlan           |     |  Dest (MAC + IP --> Meta Gateway MAC + IP)  |     |       Listened by      |     |     Add Http header   |
|    |     |           to Br-meta              |     |                 to tap-Meta                 |     |        Haproxy         |     |  to Nova-Metadata-API |
+----+     +-----------------------------------+     +---------------------------------------------+     +------------------------+     +-----------------------+

Flows (some keywords are pseudo code) on br-int:

Match: ip,in_port=<of_vm1>,nw_dst= actions=mod_local_vlan:1,output:"To_br_meta"
Match: ip,in_port=<of_vm2>,nw_dst= actions=mod_local_vlan:2,output:"To_br_meta"
Match: ip,in_port=<of_vm3>,nw_dst= actions=mod_local_vlan:1,output:"To_br_meta"
Match: ip,in_port=<of_vm4>,nw_dst= actions=mod_local_vlan:3,output:"To_br_meta"

When your VM trying to access, what should the dest MAC + IP be? The dest IP is clear, it is The complicated case is the dest MAC. We have three scenarios:

a. if your VM has only one default route which point to gateway, so the request dest MAC should be gateway MAC.

b. if your VM has a route which directly point to (for instance, to via <the DHCP port IP>, normally, this is set by original DHCP-agent and metadata mechanism), so some ARP responder(s) will be added for such DHCP port IPs, in case of upgrading. A fake mac will be responded for these DHCP port IPs.

c. if your VM has a link route which is telling guest OS is directly reachable. So an ARP responder for will be added. So the dest MAC will be a fake one as well.

Flows on br-meta:

Match: ip,in_port=<patch_br_int>,nw_dst= Action: resubmit(,80)

Match: dl_vlan=<local_vlan_1>,dl_src=fa:16:3e:4a:fd:c1,nw_src= Action: strip_vlan,mod_dl_src:fa:16:ee:00:00:11,mod_nw_src:, resubmit(,87)
Match: dl_vlan=<local_vlan_2>,dl_src=fa:16:3e:4a:fd:c2,nw_src= Action: strip_vlan,mod_dl_src:fa:16:ee:00:00:22,mod_nw_src:, resubmit(,87)
Match: dl_vlan=<local_vlan_1>,dl_src=fa:16:3e:4a:fd:c3,nw_src= Action: strip_vlan,mod_dl_src:fa:16:ee:00:00:33,mod_nw_src:, resubmit(,87)
Match: dl_vlan=<local_vlan_3>,dl_src=fa:16:3e:4a:fd:c4,nw_src= Action: strip_vlan,mod_dl_src:fa:16:ee:00:00:44,mod_nw_src:, resubmit(,87)

Match: tcp,nw_dst=,tp_dst=80 Action: mod_nw_dst:, mod_dl_dst:fa:16:ee:00:00:01,output:"tap-meta"
TCP Ingress

HTTP packets come from tap-meta to br-meta directly, then go to br-int and finnaly direct to VM. Datapath:

+----+     +---------------------+     +---------------------------------------+     +---------------+     +------------------+
|    |     |      Br-int         |     |                Br-meta                |     |    tap-Meta   |     |      Haproxy     |
| VM |     | From patch_br_meta  |     |    Source (IP --->   |     |               |     |  Http Response   |
|    | TCP |   mac_dst is VM     | TCP |  Dest(Meta MAC + IP ---> VM MAC + IP) | TCP |      To       | TCP |   To Client IP   |
|    <-----+   output to VM      <-----+               to  Br-int              <-----+ Meta MAC + IP <-----+  (Meta MAC + IP) |
+----+     +---------------------+     +---------------------------------------+     +---------------+     +------------------+

Flows on br-meta:

Match: ip,in_port="tap-meta" actions=push_vlan,goto_table:91

Match: dl_vlan=<998>,ip,nw_dst= Action: mod_vlan_vid:1,mod_dl_dst:fa:16:3e:4a:fd:c1,mod_nw_dst:,mod_nw_src:,output:"to-br-int"
Match: dl_vlan=<998>,ip,nw_dst= Action: mod_vlan_vid:2,mod_dl_dst:fa:16:3e:4a:fd:c2,mod_nw_dst:,mod_nw_src:,output:"to-br-int"
Match: dl_vlan=<998>,ip,nw_dst= Action: mod_vlan_vid:3,mod_dl_dst:fa:16:3e:4a:fd:c3,mod_nw_dst:,mod_nw_src:,output:"to-br-int"
Match: dl_vlan=<998>,ip,nw_dst= Action: mod_vlan_vid:4,mod_dl_dst:fa:16:3e:4a:fd:c4,mod_nw_dst:,mod_nw_src:,output:"to-br-int"

Flows on br-int:

Match: ip,in_port=<patch_br_meta>,dl_vlan=1,dl_dst=<vm1_mac_fa:16:3e:4a:fd:c1>,nw_src= actions=strip_vlan,output:<of_vm1>
Match: ip,in_port=<patch_br_meta>,dl_vlan=2,dl_dst=<vm2_mac_fa:16:3e:4a:fd:c2>,nw_src= actions=strip_vlan,output:<of_vm2>
Match: ip,in_port=<patch_br_meta>,dl_vlan=3,dl_dst=<vm3_mac_fa:16:3e:4a:fd:c3>,nw_src= actions=strip_vlan,output:<of_vm3>
Match: ip,in_port=<patch_br_meta>,dl_vlan=4,dl_dst=<vm4_mac_fa:16:3e:4a:fd:c4>,nw_src= actions=strip_vlan,output:<of_vm4>
ARP for Metadata IPs

Tap-meta device will be resident on host kernel IP stack, before the first response of TCP, the host (protocol stack) needs to know the META_IP’s MAC address. So ARP reqeust is broadcast. ARP will be sent from tap-meta device to br-meta responder. The ARP responder datapath:

+---------------------------+      +---------------+
|         Br-meta           |      |    tap-Meta   |
| ARP Responder for Meta IP |      |     Learn     |
|           to              | ARP  | Meta IP's MAC |
|         INPORT            <------+     (ARP)     |
+---------------------------+      +---------------+

The flows on br-meta will be:

Match: arp,in_port="tap-meta" Action: resubmit(,90)

Match: arp,arp_tpa= Action: ARP Responder with Meta_MAC fa:16:ee:00:00:11,IN_PORT
Match: arp,arp_tpa= Action: ARP Responder with Meta_MAC fa:16:ee:00:00:22,IN_PORT
Match: arp,arp_tpa= Action: ARP Responder with Meta_MAC fa:16:ee:00:00:33,IN_PORT
Match: arp,arp_tpa= Action: ARP Responder with Meta_MAC fa:16:ee:00:00:44,IN_PORT

Host haproxy configurations

The host haproxy is one only process which is used for all VMs. The host haproxy will add HTTP headers to the metadata request which is needed for metadata API. The headers have a fixed algorithm which is easy to assemble. For each VM’s request, haproxy will add an independent backend and a match rule of checking the source IP (aka Meta_IP). While the request from one VM’s (Meta_IP) it will be send to the matched backend, which add HTTP headers and then send to real nova-metadata-api.


    log         /dev/log local0 {{ log_level }}
    user        {{ user }}
    group       {{ group }}
    maxconn     {{ maxconn }}

frontend public
    bind            *:80 name clear
    mode            http
    log             global
    option          httplog
    option          dontlognull
    maxconn         {{ maxconn }}
    timeout client  30s

    acl instance_{{ instance_1.uuid }}_{{ metadata_ip_1 }} src {{ metadata_ip_1 }}
    acl instance_{{ instance_2.uuid }}_{{ metadata_ip_2 }} src {{ metadata_ip_2 }}
    acl instance_{{ instance_3.uuid }}_{{ metadata_ip_3 }} src {{ metadata_ip_3 }}
    acl instance_{{ instance_4.uuid }}_{{ metadata_ip_4 }} src {{ metadata_ip_4 }}

    use_backend backend_{{ instance_1.uuid }}_{{ metadata_ip_1 }} if instance_{{ instance_1.uuid }}_{{ metadata_ip_1 }}
    use_backend backend_{{ instance_2.uuid }}_{{ metadata_ip_2 }} if instance_{{ instance_2.uuid }}_{{ metadata_ip_2 }}
    use_backend backend_{{ instance_3.uuid }}_{{ metadata_ip_3 }} if instance_{{ instance_3.uuid }}_{{ metadata_ip_3 }}
    use_backend backend_{{ instance_4.uuid }}_{{ metadata_ip_4 }} if instance_{{ instance_4.uuid }}_{{ metadata_ip_4 }}

backend backend_{{ instance_1.uuid }}_{{ metadata_ip_1 }}
    balance         roundrobin
    retries         3
    option redispatch
    timeout http-request    30s
    timeout connect         30s
    timeout server          30s

    http-request set-header X-Instance-ID {{ instance_1.uuid }}
    http-request set-header X-Tenant-ID {{ instance_1.project_id }}
    http-request set-header X-Instance-ID-Signature {{ instance_1.signature }}

    server metasrv ...

backend backend_{{ instance_2.uuid }}_{{ metadata_ip_2 }}
    balance         roundrobin
    retries         3
    option redispatch
    timeout http-request    30s
    timeout connect         30s
    timeout server          30s

    http-request set-header X-Instance-ID {{ instance_2.uuid }}
    http-request set-header X-Tenant-ID {{ instance_2.project_id }}
    http-request set-header X-Instance-ID-Signature {{ instance_2.signature }}

    server metasrv ...

backend backend_{{ instance_3.uuid }}_{{ metadata_ip_3 }}

backend backend_{{ instance_4.uuid }}_{{ metadata_ip_4 }}

IPv6 metadata

The metadata for IPv6 2 only network has similar address fe80::a9fe:a9fe, so all these works can be mirrored for IPv6. For IPv6 the generator will use the range fe80:ffff:a9fe:a9fe::/64 to allocate Meta_IPv6 address. The Meta_gateway_IPv6 address will be fe80:ffff:a9fe:a9fe::1, Gateway MAC is still the same one fa:16:ee:00:00:01. NA responder for Meta_IPv6 address fe80:ffff:a9fe:a9fe::abcd and Meta_MAC fa:16:ee:00:00:11 will be:

Match: icmp6,icmp_type=135,icmp_code=0,nd_sll=fa:16:ee:00:00:01,

Match: icmp6,icmp_type=136,icmp_code=0,nd_target=fe80:ffff:a9fe:a9fe::abcd



Work Items

  • Adding flows action for ovs bridges

  • Adding host haproxy manager for ovs-agent

  • Adding host metadata IP and Mac generator with ovsdb settings

  • Adding ovs-agent extension to set up flows for VM ports

  • Testing.

  • Documentation.




Test cases to verify the metadata can be set properly, this can be done by using existing jobs with new new metadata driver.