
OpenStack-Ansible Documentation:
specs role

Release 0.0.1.dev220

OpenStack-Ansible Contributors

May 27, 2023

CONTENTS

1 Spec Templates 1

2 Antelope Specifications 7

3 Zed Specifications 11

4 Xena Specifications 17

5 Wallaby Specifications 23

6 Rocky Specifications 29

7 Queens Specifications 45

8 Pike Specifications 79

9 Ocata Specifications 101

10 Newton Specifications 109

11 Mitaka Specifications 151

12 Liberty Specifications 219

13 Kilo Specifications 249

i

ii

CHAPTER

ONE

SPEC TEMPLATES

1.1 Example Spec - Title of your spec

date
2016-10-13 22:00

tags
used, for, groupings, and, indexing

Update the date of your spec with the date that it was proposed. Add any tags to the spec that may be of
use for people to get what its about at a glance.

Provide a synopsis as to why you are creating this spec/blueprint.

Include the URL of your launchpad blueprint:

• https://blueprints.launchpad.net/openstack-ansible/+spec/example

Introduction paragraph why are we doing anything? A single paragraph of prose that operators can
understand. Describe the problem in as much detail as you can.

Some notes about using this template:

• Your spec should be in ReSTructured text, like this template.

• Please wrap text at 79 columns.

• The filename in the git repository should match the launchpad URL, for example a URL of: https:
//blueprints.launchpad.net/openstack-ansible/+spec/awesome-thing should be named awesome-
thing.rst

• Please do not delete any of the sections in this template. If you have nothing to say for a whole
section, just write: None or N/A

• For help with syntax, see http://sphinx-doc.org/rest.html

• To test out your formatting, build the docs using tox, or see: http://rst.ninjs.org

• If you would like to provide a diagram with your spec, ascii diagrams are required. http://asciiflow.
com/ is a very nice tool to assist with making ascii diagrams. The reason for this is that the tool
used to review specs is based purely on plain text. Plain text will allow review to proceed without
having to look at additional files which can not be viewed in gerrit. It will also allow inline feedback
on the diagram itself.

1

https://blueprints.launchpad.net/openstack-ansible/+spec/example
https://blueprints.launchpad.net/openstack-ansible/+spec/awesome-thing
https://blueprints.launchpad.net/openstack-ansible/+spec/awesome-thing
http://sphinx-doc.org/rest.html
http://rst.ninjs.org
http://asciiflow.com/
http://asciiflow.com/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

1.1.1 Problem description

A detailed description of the problem:

• For a new feature this might be use cases. Ensure you are clear about the actors in each use case:
End User vs Deployer.

• For a major reworking of something existing it would describe the problems in that feature that are
being addressed.

1.1.2 Proposed change

Provide an overview of the changes youd like to see implemented. Here is where you cover the change
you propose to make in detail. How do you propose to solve this problem?

Notable changes:

• list out all of the notable changes.

If this is one part of a larger effort make it clear where this piece ends. In other words, whats the scope
of this effort?

Alternatives

What, if any, are the alternatives to the changes you are proposing? What other ways could we do this
thing? Why arent we using those? This doesnt have to be a full literature review, but it should demonstrate
that thought has been put into why the proposed solution is an appropriate one.

Playbook/Role impact

What impact will there be on the playbooks?

Upgrade impact

If this change set concerns any kind of upgrade process, describe how it is supposed to deal with that stuff.
For example, if containers are removed and or have their specific purpose changed how do you indend to
deal with the eventual upgrade from the prospective of an existing installation? Does this change require
documentation to be fully supported or will there be specific tooling that has to be created in order for
the upgrade to be completed?

Security impact

Describe any potential security impact on the system. Some of the items to consider include:

• Does this change touch sensitive data such as tokens, keys, or user data?

• Does this change alter a deployed OpenStack API in a way that may impact security, such as a new
way to access sensitive information or a new way to login?

• Does this change involve cryptography or hashing?

• Does this change require the use of sudo or any elevated privileges?

2 Chapter 1. Spec Templates

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Does this change involve using or parsing user-provided data? This could be directly at the API
level or indirectly such as changes to a cache layer.

For more detailed guidance, please see the OpenStack Security Guidelines as a reference (https://wiki.
openstack.org/wiki/Security/Guidelines). These guidelines are a work in progress and are designed to
help you identify security best practices. For further information, feel free to reach out to the OpenStack
Security Group at openstack-security@lists.openstack.org.

Performance impact

Describe any potential performance impact on the system. For example, how is the code executed and
does it depend on upstream resources that may be unavailable?

Examples of things to consider here include:

• Adding a new PPA for upgraded packages, who is the maintainer? Does this individual push often?
How long has this individual/company maintain specific packages?

• Adding additional pinned packages for use in a python wheel. Does this package change often?
Are there tests?

End user impact

How would the end user be impacted by this change? The End User is defined as the users of the deployed
cloud?

Deployer impact

How would the deployer be impacted by this change? Discuss things that will affect how OpenStack will
be deployed, such as:

• What config options are being added? Should they be more generic than proposed? Are the default
values ones which will work well in real deployments?

• Is this a change that takes immediate effect after its merged, or is it something that has to be
explicitly enabled?

• If this change is a new binary, how would it be deployed?

• Please state anything that those doing continuous deployment, or those upgrading from the previous
release, need to be aware of. Also describe any plans to deprecate configuration values or features.
For example, if we change the name of a play, how do we handle deployments before the change
landed? Do we have a special case in the code? Do we assume that the operator will recreate
containers within the infrastructure of the cloud? Does this effect running instances within the
cloud?

1.1. Example Spec - Title of your spec 3

https://wiki.openstack.org/wiki/Security/Guidelines
https://wiki.openstack.org/wiki/Security/Guidelines
mailto:openstack-security@lists.openstack.org

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

How does this change impact future developers working on the ansible playbooks? Discuss things that
will affect other developers working on OS-Ansible-Deployment, such as:

• If this spec proposes a new role, how will that role be deployed? Is this a new default role? Does
this role have a host impact?

Dependencies

Does this blueprint/spec depend one another blueprint or spec?

• Include specific references to specs and/or blueprints in os-ansible-deployment, or in other projects,
that this one either depends on or is related to.

• Is the new requirement due to an upstream change? If so document it and provide references to the
change.

1.1.3 Implementation

Assignee(s)

Who is leading the writing of the code? Or is this a blueprint where youre throwing it out there to see
who picks it up?

If more than one person is working on the implementation, please designate the primary author and
contact.

Primary assignee:
<launchpad-id or None>

Other contributors:
<launchpad-id or None>

Please add IRC nicknames where applicable.

Work items

Work items or tasks break the feature up into the things that need to be done to implement it. Those
parts might end up being done by different people, but were mostly trying to understand the timeline for
implementation.

1.1.4 Testing

Please discuss how the change will be tested. You should be able to answer the following questions:

• Does this change impact how gating is done?

• Can this change be tested on a per-commit basis?

• Given the instance size restrictions, as found in OpenStack Infra (8GB Ram, vCPUs <= 8), can the
test be run in a resource constrained environment?

4 Chapter 1. Spec Templates

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Is this untestable given current limitations (specific hardware / software configurations available)?
If so, are there mitigation plans for this change to be tested within 3rd party testing, gate enhance-
ments, etc?

• If the service is not OpenStack specific how can we test the change?

1.1.5 Documentation impact

What is the impact on the docs team of this change? Some changes might require donating resources
to the docs team to have the documentation updated. Dont repeat details discussed above, but please
reference them here.

1.1.6 References

Please add any useful references here. You are not required to have any reference. Moreover, this specifi-
cation should still make sense when your references are unavailable. Examples of what you could include
are:

• Links to mailing list or IRC discussions

• Links to relevant research, if appropriate

• Related specifications as appropriate

• Anything else you feel it is worthwhile to refer to

1.1. Example Spec - Title of your spec 5

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

6 Chapter 1. Spec Templates

CHAPTER

TWO

ANTELOPE SPECIFICATIONS

2.1 Separated Haproxy Service Config

date
2023-01-19 22:00

tags
separated haproxy service config, internal tls

Currently, all haproxy services are configured during execution of haproxy-install.yml playbook. It may
cause issues with variables scope or even completely break a service until service role is executed.

These issues may be avoided if the current behavior will be changed and haproxy services will be con-
figured separately at the beginning of each service playbook.

2.1.1 Problem description

Preconfiguring all haproxy services may lead to some issues. There are 2 examples:

1. Variables scope

Currently, haproxy service definitions stored in inventory/group_vars/haproxy/haproxy.yml refer
to variables like neutron_plugin_type. It makes a problem because this is neutrons variable. If
someone wants to change its value, they will probably set an override in neutron group variables.
Its problematic because haproxy is not in neutron group, so all neutrons variables wont have an
effect for haproxy role. In order to make haproxy respect this change, variable needs to be defined
for all hosts, so both haproxy and neutron will have access to it.

Additionally, we are currently working on encrypting traffic between haproxy and service backends.
Proposed PoC [1] does the same thing as described above. It refers to glance_backend_https
variable belonging to glance role.

2. Strong dependency between haproxy role and service roles

Some changes in haproxy service need an immediate reaction from service role. For example: user
enables TLS for communication between haproxy and glance backends. To fix that, haproxy role
needs to be executed. It will configure glance service to communicate with its backends over TLS,
but at this point backends are not ready to handle TLS connections. To fix it, glance role needs to
be executed, but it takes time and increases downtime. Removing dependencies like this between
roles would make the configuration process more reliable.

Please note that downtime will still occur. It will start after haproxy service config step and finish
after first backend host will be configured. To provide zero-downtime transition to TLS, further

7

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

work related to internal TLS project is required.

2.1.2 Proposed change

Add an extra step at the beginning of each service role to configure haproxy service(s) for it. In this case,
haproxy services will be configured separately, so nova playbook will configure nova haproxy services,
glance playbook will configure its own haproxy services etc. Haproxy playbook will be only responsible
for configuring services not related to any openstack role(letsencrypt, ceph-rgw, custom user-defined
services etc.)

Alternatives

No alternatives.

Playbook/Role impact

Each playbook will contain an extra step responsible for configuring haproxy service role(s) for it.

Upgrade impact

Some variables will be removed or replaced. Its already covered in release notes.

Security impact

No impact.

Performance impact

No impact.

End user impact

No impact.

Deployer impact

From now on, haproxy services will be configured separately when running service playbooks(like os-
nova-install.yml)

8 Chapter 2. Antelope Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

No impact.

Dependencies

No dependencies.

2.1.3 Implementation

Assignee(s)

Primary assignee:
Damian Dabrowski <damian@dabrowski.cloud>

Work items

• configure haproxy_server role to support separated service config

• configure service playbooks to include an extra step to configure haproxy service

• solve all corner cases(like dependency between letsencrypt and horizon)

Changes Hierarchy

All changes are available on gerrit under separated-haproxy-service-config tag[2]. It may be hard to
understand relations between them so here is a description Changes at the top should be merged first.
Horizontal lines split dependency groups(changes in the same group may be merged independently)

• Blueprint for separated haproxy service config https://review.opendev.org/c/openstack/
openstack-ansible-specs/+/871187

• [openstack-ansible] Define some temporary vars for haproxy https://review.opendev.org/c/
openstack/openstack-ansible/+/872328

• [haproxy_server] Prepare haproxy role for separated haproxy config https://review.opendev.org/c/
openstack/openstack-ansible-haproxy_server/+/871188

• [openstack-ansible] Prepare service roles for separated haproxy config https://review.opendev.org/
c/openstack/openstack-ansible/+/871189

• [haproxy_server] [DNM] Remove temporary tweaks related to separated haproxy service config
https://review.opendev.org/c/openstack/openstack-ansible-haproxy_server/+/871194

2.1. Separated Haproxy Service Config 9

mailto:damian@dabrowski.cloud
https://review.opendev.org/c/openstack/openstack-ansible-specs/+/871187
https://review.opendev.org/c/openstack/openstack-ansible-specs/+/871187
https://review.opendev.org/c/openstack/openstack-ansible/+/872328
https://review.opendev.org/c/openstack/openstack-ansible/+/872328
https://review.opendev.org/c/openstack/openstack-ansible-haproxy_server/+/871188
https://review.opendev.org/c/openstack/openstack-ansible-haproxy_server/+/871188
https://review.opendev.org/c/openstack/openstack-ansible/+/871189
https://review.opendev.org/c/openstack/openstack-ansible/+/871189
https://review.opendev.org/c/openstack/openstack-ansible-haproxy_server/+/871194

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

2.1.4 Testing

Special attention is required for gating. Merging this change for all roles may be complicated.

2.1.5 Documentation impact

Documentation needs to updated in a few places. Uploaded changes already contain these updates.

2.1.6 References

[1] https://review.opendev.org/c/openstack/openstack-ansible/+/821090

[2] https://review.opendev.org/q/topic:separated-haproxy-service-config

10 Chapter 2. Antelope Specifications

https://review.opendev.org/c/openstack/openstack-ansible/+/821090
https://review.opendev.org/q/topic:separated-haproxy-service-config

CHAPTER

THREE

ZED SPECIFICATIONS

3.1 Enabling TLS on Internal Communications

date
2022-11-16 21:00

tags
ssl, tls, certificates, https, security

To improve the security of an OpenStack-Ansible deployments all traffic, both internal and external
should be encrypted. There is already support for encrypting external traffic from all public endpoints
that reside behind haproxy, but this is not the case for all internal traffic.

3.1.1 Problem description

This problem can broadly be split into 3 sections:

• Securing internal communications to the internal haproxy VIP

• Securing internal communications from haproxy to backends

• Securing internal communications between services such as rabbitmq, galera, nova live migration
and noVNC

Securing internal communications to the internal haproxy VIP

Support for using TLS on in the internal haproxy VIP is already present in haproxy role and is enabled
for the AIO deployment, but not enabled for new or upgrades of existing deployments.

There are no issues with enabling TLS on the internal haproxy VIP for new deployments, but for existing
deployments an upgrade process needs to be implemented. The reason an upgrade process is required is
because currently if you enabled TLS on the internal haproxy VIP it would cause downtime, until each
client is configured to use HTTPS instead of HTTP.

Problems to resolve:

• Haproxy configuration to allow TLS to be enabled without downtime of APIs on existing deploy-
ments

• OpenStack-Ansible upgrade process and upgrade scripts to enable TLS without downtime of APIs
on existing deployments

11

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Securing internal communications from haproxy to backends

Securing the communications from haproxy to the services backends is as important as securing com-
munication to the internal haproxy VIP.

A large number of the services used with haproxy use UWSGI, meaning once TLS support is added to
the UWSGI role there is only configuration to enable TLS and the generation of certificates required for
each of the services.

For services that do not use USWGI, such a noVNC Proxy further investigation is required.

As with enabling TLS on the internal haproxy VIP for new deployments, there is no issue with enabling
TLS from haproxy to backends, but an upgrade process for existing deployments is required. The reason
an upgrade process is required is because if haproxy expects TLS backends, but TLS has not been enabled
on the service yet the connection will fail and if you enable TLS on the service the connection will fail
as haproxy is not configured for TLS.

Problems to resolve:

• Add TLS support to UWSGI

• Add configuration to role for each service that use UWSGI to enable TLS

• Add configuration to role for remaining services that do not use UWSGI

• Add configuration to OpenStack-Ansible to enable TLS on backend of each service

• OpenStack-Ansible upgrade process and upgrade scripts to enable TLS on backends without down-
time of APIs on existing deployments

Securing internal communications between services

Many OpenStack services communicate directly with each other and do not use haproxy, these commu-
nications should also be secured. The work to secure these communications is already complete and
enabled in the Yoga release of OpenStack-Ansible, for the following services:

• RabbitMQ

• Galera

• Nova live migrations

• noVNC (noVNC to compute nodes).

Problems to resolve:

• Secure the following services:

– Memcached

– etcd

– OVN/OVS

• Are there any services missing from the list that do not go via haproxy that need their communi-
cations securing?

12 Chapter 3. Zed Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

3.1.2 Proposed change

Enable TLS on all internal communications.

Internal communications could be encrypted using a self-signed certificate, but as OpenStack-Ansible has
support for issuing certificates from a self-signed private certificate authority using the ansible-role-pki,
this should be used instead as it both encrypts the data and allows a client to trust the server.

In all cases a user should be able to override the certificates issued by a self-signed private certificate
authority, allowing them to provide their own certificate which may have been issued by a publicly trusted
certificate authority.

Alternatives

None, internal communications should be protected and TLS is an appropriate and well used solution.

Playbook/Role impact

Roles:

• Support for generating certificates using the ansible-role-pki role will be added to each service

• Configuring to enable/disable TLS will be added

Upgrade impact

Enabling TLS could be performed during or post upgrade.

As discussed in the problem description section, enabling TLS on the internal haproxy VIP and service
backends for existing deployments will cause downtime during an upgrade if enabled. The reason it will
cause downtime is that for both communications from internal client => internal haproxy VIP (server)
and haproxy (client) => openstack service backend (server), both the client and server need to be updated
to use TLS at the same time.

To mitigate this issue I propose an intermediate step during an upgrade, where haproxy frontend will ac-
cept both HTTP and HTTPS communications. This would be achieved by adding a new TCP frontend to
haproxy that accepts both HTTP and HTTPS traffic and redirects to correct frontend for each, and means
that openstack clients can carry on using the same well known port and haproxy looks after redirecting
them to the correct frontend; HTTP or HTTPS.

To mitigate issues with haproxy<>backend communication, I suggest implementing Separated Haproxy
Service Config feature[1] that configures openstack service and its haproxy service in the same playbook.

The other issue to be aware of is that when user wants to use predefined certificate, this certificate will be
used on all VIPs, both internal and external. This means that if TLS is enabled on haproxys internal VIP,
internal clients must be able to trust the presented certificate if it is the same as the external certificate.
This limitation does not apply to: - certbot, which can present a separate certificate on external interfaces.
- PKI role which installs different certificates for external and internal VIPs by default

3.1. Enabling TLS on Internal Communications 13

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

This change will encrypt all internal communications, securing any sensitive data being sent, therefore
security is improved.

Performance impact

Implementing TLS on all internal communications will lead to a small increase in the processing require-
ments and latency of servers and clients, but the increased security outweighs these.

End user impact

None, if the deployment is done correctly.

Deployer impact

• Deployers will need to add monitoring of certificate expiry dates and renew is necessary, if a
certificates expires connections between services will be dropped.

• This change should have no impact to deployers of new deployments, OpenStack-Ansible will
create the certificates, deploy them and configure all services to use them.

• This change will impact existing deployments and an upgrade process will be implemented to help
minimise and possibly prevent this.

Developer impact

No impact, other that traffic will be encrypted meaning tools like tcpdump may provide less useful as
they will not be able to the see the contents of packets.

Dependencies

None.

3.1.3 Implementation

Assignee(s)

Primary assignee:
Damian Dabrowski <damian@dabrowski.cloud>

14 Chapter 3. Zed Specifications

mailto:damian@dabrowski.cloud

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• Enable TLS support to UWSGI role

• Enable TLS backend support to haproxy role

• Add configuration to openstack services that use UWSGI to create TLS certificate and enable TLS
on UWSGI

• Add configuration to remaining openstack services that do not use USWGI to enable TLS support

• Add configuration in OpenStack-Ansible to allow TLS for all service to be enabled on both the
server and haproxy

• Update documentation on TLS configuration options

• Add documentation for upgrade procedure

• Add script to automate as much as possible of the upgrade

3.1.4 Testing

These changes can be tested using the existing setup, but manual testing of upgrade procedure will be
required to make this is does not cause any downtime, as the automated testing only confirms a working
upgrade at the end.

3.1.5 Documentation impact

As this change will add extra configuration options these will need to be documented.

The upgrade procedure for existing deployments will also have be documented, as if this functionality is
not deployed correctly it may cause system distribution.

3.1.6 References

[1] https://specs.openstack.org/openstack/openstack-ansible-specs/specs/antelope/
separated-haproxy-service-config.html

3.1. Enabling TLS on Internal Communications 15

https://specs.openstack.org/openstack/openstack-ansible-specs/specs/antelope/separated-haproxy-service-config.html
https://specs.openstack.org/openstack/openstack-ansible-specs/specs/antelope/separated-haproxy-service-config.html

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

16 Chapter 3. Zed Specifications

CHAPTER

FOUR

XENA SPECIFICATIONS

4.1 Protecting OpenStack Plaintext Secrets Automation

date
2021-04-22 22:00

tags
protecting plaintext configs, oslo.config, castellan, vault, security

OpenStack services require sensitive data to be in configuration files. These are values for various con-
figuration options such as password, transport_url, connection, and so on. The configuration files
for OpenStack services are just plaintext files. Because of this, even with proper file permissions set on
these files, secret data is kept there without any protection at present.

A specification on protecting plaintext secrets in OpenStack was created by Raildo Mascena de Sousa
Filho [1]. Also, the osloconfig and castellan libraries support the following scheme of configuration files
processing: oslo-config can read configuration options and their values with help of castellan, which is
able to read that data from a protected key management solution, such as HashiCorp Vault.

The proof of concept for this scheme was made by Moisés Guimarães de Medeiros in his code [2]. So,
the problem of securing sensitive options in OpenStack plaintext configuration is almost solved, with the
exception of the automation of such a secure configuration.

4.1.1 Problem description

At present, oslo.config allows us to specify the config_source in the DEFAULT section of a configu-
ration file, and to use castellan driver to read configuration options from the appropriate configuration
file section:

[DEFAULT]
config_source = secrets

[secrets]
driver=castellan
config_file=castellan.conf
mapping_file=mapping.conf

The castellan.conf and mapping.conf configuration files includes information on how to read con-
figuration options values from a secret store.

castellan.conf example:

17

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

[key_manager]
backend=vault

[vault]
kv_mountpoint=kv
vault_url='https://vault.enterprise.local:8200'
use_ssl=True

mapping.conf example:

[oslo_messaging_notifications]
transport_url=6d1c6b6bd925418eb3c99523750bc4be

[database]
connection=20921387a863462dae4db253198156ec

where the values of transport_url and connection parameters are IDs of appropriate records in the
HashiCorp Vault.

The problem is that a system administrator needs to insert appropriate values to the HashiCorp Vault
or another secret storage, and then reconfigure the OpenStack services either manually or with some
preferred automation tools. There is no existing solution today for starting OpenStack with secured
configuration files from the very beginning.

With all of this in mind, we are proposing that system administrators should be allowed to install Open-
Stack with secured configuration files.

4.1.2 Proposed change

So, there are two parts of protecting OpenStack plaintext configuration files:

• installation of HashiCorp Vault, in case it is not installed;

• proper configuration of all OpenStack services with plaintext configs.

This spec proposes to make the following additions to openstack-ansible [3]:

• add playbook for HashiCorp Vault installation;

• add additional tasks to OpenStack services playbooks;

• add additional parameters for system administrator to choose if OpenStack is going to be installed
with protected plaintext configs or not.

Such additional parameters are:

• vault_hosts optional parameter which indicates hosts where HasiCorp Vault should be installed.
HashiCorp Vault should have high availability installation as other OpenStack services have;

• protected_configs and protected_configs_castellan_conf, should be added to
openstack_user_config.yml file. protected_configs parameter should take true or
false values, and the default value should be false.

If the system administrator sets the value to true, then additional steps are performed in playbooks to
address the below:

• check for required Python libraries (such as castellan) and install i them if needed;

18 Chapter 4. Xena Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• add appropriate values to secret store;

• prepare service configuration file without sensitive data but with config_source option and se-
crets section;

• add castellan.conf to service configuration directory;

• add mapping.conf to service configuration directory.

This change does not require any changes to oslo.config or castellan, since everything is already
supported at present.

4.1.3 Alternatives

The protection of plaintext secrets can be implemented by using a separate Ansible playbook just
for the services reconfiguration, after installing OpenStack with unsecured configuration files with
opentack-ansible.

In that case, the list of services to secure should be given to the playbook, and the tasks of such a playbook
should do almost the same steps as described above:

• install and initialize HashiCorp Vault;

• check for required Python libraries (such as castellan) and install them if needed;

• add appropriate values to secret store;

• prepare service configuration file without sensitive data but with config_source option and se-
crets section;

• add castellan.conf to service configuration directory;

• add mapping.conf to service configuration directory;

• restart OpenStack service.

Playbook/Role impact

Additional role on HashiCorp Vault installation should be added.

Additional tasks for proper configuration of OpenStack services should be added to playbooks.

Upgrade impact

No impact.

4.1. Protecting OpenStack Plaintext Secrets Automation 19

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

Sensitive data is going to be removed from plaintext config files so security will be improved with this
change.

Performance impact

No impact.

End user impact

No impact.

Deployer impact

No impact in case deployer does not want to protect plaintext configs. Otherwise deployer will be able
to configure additional options to remove sensitive data from plaintext configs as described above.

Developer impact

No impact.

Dependencies

Here is initial blueprint regarding protection of sensitive data inside plaintext configs:

https://blueprints.launchpad.net/oslo.config/+spec/protect-plaintext-passwords

4.1.4 Implementation

Assignee(s)

Primary assignee:
yeremko <Alexander.Yeremko@walmart.com>

Other contributors:
<Misha.Vorona@walmart.com>

Work items

• Implement changes to openstack-ansible [3]

• Implement changes to openstack-ansible-tests [4]

• Update documentation.

20 Chapter 4. Xena Specifications

https://blueprints.launchpad.net/oslo.config/+spec/protect-plaintext-passwords
mailto:Alexander.Yeremko@walmart.com
mailto:Misha.Vorona@walmart.com

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

4.1.5 Testing

Additional tests in openstack-ansible-tests [4] will be required to cover the added functionality.

4.1.6 Documentation impact

The documentation will need to be updated to illustrate how to protect plaintext configs and work with
them further.

4.1.7 References

[1] https://specs.openstack.org/openstack/oslo-specs/specs/stein/secret-management-store.html

[2] https://github.com/moisesguimaraes/ep19

[3] https://opendev.org/openstack/openstack-ansible

[4] https://opendev.org/openstack/openstack-ansible-tests

[5] https://www.vaultproject.io/

4.1. Protecting OpenStack Plaintext Secrets Automation 21

https://specs.openstack.org/openstack/oslo-specs/specs/stein/secret-management-store.html
https://github.com/moisesguimaraes/ep19
https://opendev.org/openstack/openstack-ansible
https://opendev.org/openstack/openstack-ansible-tests
https://www.vaultproject.io/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

22 Chapter 4. Xena Specifications

CHAPTER

FIVE

WALLABY SPECIFICATIONS

5.1 SSL Root Certificate Authority

date
2020-10-19 14:00

tags
ssl, haproxy, nova, galera, infra

Blueprint on Launchpad:

• https://blueprints.launchpad.net/openstack-ansible/+spec/ssl-root-ca

Having SSL encryption is a vital part of every service in the modern world. OpenStack-Ansible already
provides deployers options how to cover public and internal endpoints with SSL certificates and allows
the generation and use self-signed certificates. However we can make these certificates verified by usage
of the root CA, which will be distributed across all containers and services. This will increase security
as users will be alerted in case of the certificate verification failure, since certificate verification will be
enabled.

5.1.1 Problem description

At the moment several openstack-ansible roles do create self-signed certificates their own way which does
not provide any consistency and is pretty hard to maintain. Moreover, these certificates are self-signed
ones, which means that certificate verification has to be disabled for such certificates. So in case of the
certificate impersonation you wont be alerted, and encrypted data might be not secure anymore.

Futhermore, for mysql SSL usage, it is required to place Root CA on the client containers for mysqlclient
to reach the database, while at the moment we have only server side encryption covered, but Root CA
distribution remains the responsibility of the deployer. Another good example is nova, where in order to
disable tunneling for the live migrations and to use block device migrations, we should be securing the
connection with mutually verifiable certificates.

To resolve all of the problems above we need:

• Root CA certificate (and corresponding key which may not be available)

• An intermediate signing certificate and key

23

https://blueprints.launchpad.net/openstack-ansible/+spec/ssl-root-ca

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

5.1.2 Proposed change

In order to resolve issue we need to create a root certificate authority on the deploy host, which will be
used for the futher creation of the certificates.

We need this for (but not limited to):

• Creating a self-signed certificate for HAProxy in CI

• Creating ssh signed certs to replace ssh keys in nova and keystone roles

• To use TLS for live migration

• To use TLS for galera and other infrastructure services

• To use TLS for connection between HAProxy and uwsgi

Implementation

Create role in separate repo which would consist from several parts which would be included wherever
needed:

Create/rotate or verify existing provided CA on the deploy host. Included in open-
stack_hosts, to distribute CA to certificate storage We should implement proper Root CA
rotation mechanism including usage of the OldWithOld, OldWithNew, and NewWithOld. #
Create/rotate or verify existing key and certificate, which would be also stored on the deploy
host. Will be included in required roles during their runtime Each instance of each compo-
nent uses a unique certificate. # Decide what we call the internal VIP if its needed to verify
the dns name against subject name in an SSL certificate. Consider having support for SAN
certificates that will include several names or IPs. # Create a signed ssh key which can be
validated against the CA certificate to avoid needing to distribute all keys to all hosts. # Role
should have a specific key to rotate self-signed certificates and root CA when its asked to do
so. Its up to deployer to keep track on the certificates exipration date. Since they are placed
on the deploy host, it should be pretty straightforward to configure monitoring tool for that.

5.1.3 Roles/service impact

For all hosts/containers

The Root CA is installed into the system trust store Consider pointing REQUESTS_CA_BUNDLE to
the system trust store rather than certificate bundle.

For HAproxy

We will have the following user scenarios:

• The user supplies their own cert and key and points variables to the files

• Letsencrypt creates the certificate

• A self signed certificate and key is created at deploy time by the OSA role

• Disable SSL certificate usage

24 Chapter 5. Wallaby Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Note: Self signed cert is required to bootstrap LE for the first run

For Galera (or other infrastructure service)

We will have the following user scenarios:

• The user supplies their own cert and key and points variables to the files

• A self signed certificate and key is created on the deploy host at deploy time by the OSA role (stored
in a well known location on the deploy host). The existing ansible roles pick these up

• Disable SSL certificate usage

For service components such as Nova and Octavia which can use TLS

We will have the following user scenarios:

• The user supplies their own cert and key and points variables to the files

• A self signed certificate and key is created on the deploy host at deploy time by the OSA role (stored
in a well known location on the deploy host) The existing ansible roles pick these up

• Disable SSL certificate usage

To replace ssh keys

• Signed ssh certificates are created on the deploy host and copied to the relevant .ssh user directories.
The signing CA is installed into the relevant ssh_config file in /etc/

• The deployer may already be using signed ssh keys for access to hosts so any implementation
should work alongside existing configuration. It may be necessary to investigate supporting more
than one trusted CA in the ssh_config file.

Upgrade impact

By default self-singed alternatives will be used for all types of services. In case deployer would like to
omit that, he will need to explicitly disable that behaviour before upgrade. No other impact for upgrades
is planned at the moment.

Security impact

Realization of this blueprint should make systems more secure because of the SSL usage for most of the
interactions and enabling SSL verification even for the self-singed sertificates.

5.1. SSL Root Certificate Authority 25

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

This may decrease performance slightly because SSL encryption requires several extra CPU cycles and
TLS handshake to be performed, however this drawdown can be neglected.

End user impact

No end user impact

Deployer impact

The deployer will be able to provide:

• Root CA

• An intermediate cert and key

Also we should leave possible to disable SSL usage for services.

Developer impact

This blueprint will ease maintenance of the roles, because all SSL-specific parts will be moved to the
standalone role. So in case of the need to change specific task it would be done in a single place rather
than in each role.

5.1.4 Implementation

Assignee(s)

Primary assignee:
noonedeadpunk

Other contributors:
jrosser

Work items

TBD

5.1.5 Testing

We will enable self-singed certificates usage in CI

26 Chapter 5. Wallaby Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

5.1.6 Documentation impact

Documentation of the added options and architecture should be added at the end of the day, as well as
release notes.

5.1.7 References

• Etherpad discussion: https://etherpad.opendev.org/p/osa-certificates-refactor

• Root CA Key Update https://tools.ietf.org/html/rfc4210#section-4.4

5.1. SSL Root Certificate Authority 27

https://etherpad.opendev.org/p/osa-certificates-refactor
https://tools.ietf.org/html/rfc4210#section-4.4

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

28 Chapter 5. Wallaby Specifications

CHAPTER

SIX

ROCKY SPECIFICATIONS

6.1 Use nginx as centralized reverse proxy for API services

date
2017-12-02 00:00

tags
nginx, load balancing, wsgi, API

In the previous cycle, most OpenStack API services provided a WSGI application which is being serviced
through uWSGI. The aim of this spec is to outline a plan for taking advantage of the greater flexibility
uWSGI provides and making use of nginx as a centralized reverse proxy.

https://blueprints.launchpad.net/openstack-ansible/+spec/centralized-nginx

6.1.1 Problem description

Within most roles, OpenStack API services are now deployed and served through uWSGI. Some however,
also include the installation of a web server proxy in front of that. The web server is currently assumed
to be installed on the host in isolation and managed through the installing role. This causes issues with
converged installations, such as an all bare metal scenario. SSL encryption of service requests is also
currently difficult because of this inconsistency between individual service deployments. For the most
part, SSL termination in OpenStack-Ansible deployments is expected to be handled at the load balancer
but deployers may require additional controls over the handling of encrypted traffic.

6.1.2 Proposed change

Remove the installation of nginx from any OpenStack role that includes it today and instead deploy it
separately as a shared reverse proxy with individual sites configured for each OpenStack API service.
The OpenStack roles will only need to provide site configurations for an existing nginx installation.

For management of the uWSGI backends that nginx will be proxying, install a uWSGI FastRouter along-
side nginx. The FastRouter will create a shared socket that nginx can connect to, and a subscription
server for the applications to subscribe to and automatically provide load balancing for.

29

https://blueprints.launchpad.net/openstack-ansible/+spec/centralized-nginx

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

nginx could instead be deployed alongside each OpenStack service, but that could have an effect on
performance due to the additional processes running on the host and wouldnt address the duplication of
tasks and conflicts caused when multiple roles are attempting to manage the same web server on the same
physical host or container.

The load balancer backends could use uWSGI http/https directly, most projects recommended a dedicated
web server however. With the proposed change, there is a clear separation between the handling of
http requests and running of Python code. Load balancer configurations can also be simplified since
all OpenStack API backends would use the same set of nginx hosts, instead of requiring knowledge of
individual containers. And for scaling purposes, a new or replaced API service installation will only need
to subscribe to the FastRouter to be included in the pool.

Playbook/Role impact

A new playbook will need to be created to install nginx and a uWSGI FastRouter. An existing nginx
role from galaxy would be preferred, but one may need to be created or contributed to if there is not one
that supports all of the same operating systems that OpenStack-Ansible does or that does not provide
sufficient configuration options for our needs.

Each existing OpenStack role that deploys a web server will need to have those tasks removed and replaced
with a task to configure and enable an nginx site, delegated to any hosts running nginx. The uWSGI
configuration within those roles will also need to be updated with options to subscribe to an existing
FastRouter.

The HAProxy server role may require more flexibility, such as allowing SSL passthrough and just-in-time
configuration of services and backends.

Upgrade impact

Since load balancer backends will likely be changing, the load balancer will need to initially contain both
the existing backends and the centralized nginx backends to limit downtime during upgrades.

Security impact

The proposed change should increase the security posture of OpenStack-Ansible since it will allow de-
ployers to have more flexibility over where SSL is terminated, including preventing traffic from leaving
a host once it is unencrypted.

Performance impact

nginx is a high performance web server and reverse proxy. There may be some host performance increase
with less web servers running on a single controller host. Deployment times may also be improved by
removing the duplicated tasks of installing and configuring a web server within multiple roles.

30 Chapter 6. Rocky Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

End user impact

N/A

Deployer impact

Deployers will need to be aware of the deployment architecture changes this change includes. Additional
options will be available to deployers to configure a shared nginx instance, uWSGI FastRouter, and the
distribution of SSL certificates. Deployers must also be made aware of any upgrade impact this change
may have.

Developer impact

Future OpenStack roles will need to include the patterns established by this change. Tests will require
additional Ansible roles, playbooks, and variables.

Dependencies

The HAProxy server role may require some changes and increased configuration flexibility.

The keystone role currently conditionally installs Apache when used as an identity provider or service
provider for an external identity provider. This will need to be investigated further to ensure that nginx
can provide the same level of support for those roles, including gated test scenarios.

The horizon role also currently installs Apache and uses it to serve static content. When running on a
container, that static content may need to move to a mount to remain accessible to an external web server.

6.1.3 Implementation

Assignee(s)

Primary assignee:
jimmy-mccrory (jmccrory)

Other contributors:
<launchpad-id or None>

Work items

• Evaluate existing nginx roles in galaxy

• Develop new nginx role if necessary

• Develop playbook for deploying nginx and uWSGI FastRouter

• Adapt HAProxy role

• Evaluate bind mounting of files statically served by web server

• Update OpenStack roles to create nginx site configuration and subscribe to FastRouter for API
services

6.1. Use nginx as centralized reverse proxy for API services 31

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

6.1.4 Testing

Individual roles and the integrated repo will test the changes involved as they are implemented.

6.1.5 Documentation impact

The changes to the deployment architecture and any additional options for configuring nginx, uWSGI
FastRouter, HAProxy, and SSL will need to be documented.

The impacts to upgrades and steps to minimize, and hopefully avoid, API downtime will also need to be
documented.

6.1.6 References

https://uwsgi-docs.readthedocs.io/en/latest/Fastrouter.html

6.2 Integration of Masakari with OpenStack-Ansible

date
2018-03-22 14:00

tags
openstack, masakari, masakari-monitors

Blueprint on Launchpad:

• https://blueprints.launchpad.net/openstack-ansible/+spec/masakari-ansible-plugin

Masakari provides Virtual Machine High Availability (VMHA) service for OpenStack clouds by auto-
matically recovering the KVM-based Virtual Machine(VM)s from failure events such as VM process
down, provisioning process down, and nova-compute host failure. It also provides API service for man-
aging and controlling the automated rescue mechanism. The Masakari service consists of the following
components:

• masakari-api: An OpenStack-native REST API that processes API requests by sending them to the
masakari-engine over Remote Procedure Call (RPC).

• masakari-engine: Processes the notifications received from masakari-api by execcuting the re-
covery workflow in asynchronus way.

• masakari-monitors: Monitors for Masakari provides Virtual Machine High Availability (VMHA)
service for OpenStack clouds by automatically detecting the failure events such as VM process
down, provisioning process down, and nova-compute host failure. If it detects the events, it sends
notifications to the masakari-api.

This spec outlines the steps required to integrate Masakari with OpenStack-Ansible.

32 Chapter 6. Rocky Specifications

https://uwsgi-docs.readthedocs.io/en/latest/Fastrouter.html
https://blueprints.launchpad.net/openstack-ansible/+spec/masakari-ansible-plugin

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

6.2.1 Problem description

Masakari provides Instances High Availability Service for OpenStack clouds by automatically recovering
failed Instances. However, it needs to be installed manually with OpenStack-Ansible. No role exists to
deploy it as other services are deployed.

6.2.2 Proposed change

The proposed changes would include:

• Import a proof of concept role for Masakari from https://github.com/NirajSingh90/
openstack-ansible-os_masakari to openstack-ansible-os_masakari

• Follow the usual path described in the developer documentation.

Alternatives

There are no alternatives.

Playbook/Role impact

This is a new feature added into OpenStack-Ansible. No role currently exists. Therefore, new role,
openstack-ansible-os_masakari needs to be written from scratch.

Upgrade impact

No upgrade impact since this would be the first implementation of the proposed change.

Security impact

No security impact.

Performance impact

No performance impact.

End user impact

End user will be able to use masakari as a service within OpenStack-Ansible.

6.2. Integration of Masakari with OpenStack-Ansible 33

https://github.com/NirajSingh90/openstack-ansible-os_masakari
https://github.com/NirajSingh90/openstack-ansible-os_masakari

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Deployers will need to enable Masakari deployments if they choose to use this. Masakari will not be
deployed by default.

Developer impact

No impact.

Dependencies

By employing a combination of Corosync and Pacemaker, OpenStack Masakari creates a cluster of
servers, detecting and reporting failure of hosts in the cluster. So masakari is dependent on Corosync
and Pacemaker.

We will reuse an external role for corosync and pacemaker to not re-invent the wheel, like the one found
in https://github.com/leucos/ansible-pacemaker-corosync .

6.2.3 Implementation

Assignee(s)

Primary assignee:
Niraj Singh (IRC: niraj_singh)

Work items

Masakari is not available as a service for OpenStack-Ansible. No role already exists. A new role will be
developed from scratch in compliance with the standards set by the community. It will be added under
https://github.com/openstack/openstack-ansible-os_masakari

Note: Masakari role will install below services: masakari-api masakari-engine masakari-processmonitor
masakari-hostmonitor masakari-instancemonitor

masakari-processmonitor, masakari-hostmonitor and masakari-instancemonitor will be installed only on
nova-compute nodes

6.2.4 Testing

Tests will be developed to ensure that deployment of Masakari works. Masakari doesnt have tempest
tests therefore we will start by testing the API responses codes. Masakari-monitor and Masakari-engine
services tests will be added in future using third party CI tests.

34 Chapter 6. Rocky Specifications

https://github.com/leucos/ansible-pacemaker-corosync
https://github.com/openstack/openstack-ansible-os_masakari

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

6.2.5 Documentation impact

As this would be new feature added to OpenStack-Ansible, it needs to be documented, explaining all the
configuration parameters.

6.2.6 References

Masakari Overview

• https://wiki.openstack.org/wiki/Masakari

Masakari developer/operator documentation

• https://docs.openstack.org/masakari/latest

6.3 Install OpenStack services from distribution packages

date
2018-03-27 00:00

tags
roles, deployment

Blueprint on Launchpad

• https://blueprints.launchpad.net/openstack-ansible/+spec/openstack-distribution-packages

This spec outlines the work required to enable the OpenStack-Ansible roles to install the OpenStack
services using the distribution packages from the distribution Cloud repositories.

6.3.1 Problem description

OpenStack-Ansible installs the OpenStack services from the source. Whilst this is great in terms of
flexibility, it creates some problems such as:

• Long deployment times since wheel packages need to be built and distributed.

• Unsupported installations by distributions. The versions of OpenStack services built from source
do not necessarily match what distributions test together as part of their integration and verification
process so its hard for them to provide support for such installations. As a result of which, operators
have limited options when seeking technical support for their deployments.

6.3.2 Proposed change

Add an additional installation method to all the OpenStack-Ansible roles in which the services will be
installed using the packages provided by the distributions themselves. The default installation method
will not change.

6.3. Install OpenStack services from distribution packages 35

https://wiki.openstack.org/wiki/Masakari
https://docs.openstack.org/masakari/latest
https://blueprints.launchpad.net/openstack-ansible/+spec/openstack-distribution-packages

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

N/A

Playbook/Role impact

All the OpenStack Ansible roles which install OpenStack services (os_*) will be impacted by the pro-
posed change. A new variable will be made available on per-role basis to allow deployers to select the
preferred installation method.

Switching from one installation method to the other will not be supported. This can be clarified on the
Deployers documentation and also explicitly detected and prevented in the Ansible playbooks possibly
by storing a local fact on the host to denote the installation method and checking it during upgrades.

Upgrade impact

Upgrades should not be impacted since the default installation method will not change.

Security impact

The security of the overall installation will not change since distributions normally backport security fixes
which are already present in the upstream packages so both installations methods will offer the same level
of security reassurances.

Performance impact

The overall performance of the deployment will likely be improved since the distribution packages nor-
mally have their default settings tweaked and optimized to match each distributions environment and
needs.

End user impact

N/A

Deployer impact

The benefit of this new method for deployers is twofold:

• Use supported packages by distributions and provide feedback back to them. This benefits both
distributions and operators since both ends use packages which have passed integration and func-
tional testing before being released.

• Shorten deployment times since distribution packages are used instead of building new ones from
source.

36 Chapter 6. Rocky Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

N/A

Dependencies

N/A

6.3.3 Implementation

Assignee(s)

Primary assignee:
Markos Chandras (hwoarang)

Work items

The following work items are the same across all impacted roles

• Move existing installation tasks to a new file (${role}_install_source.yml)

• Create new file (${role}_install_distro.yml) with a set of tasks for distribution installations
if necessary.

• Add new variable to allow deployers to select installation method (${role}_install_method)

• Dynamically include the appropriate installation file based on the variables value

6.3.4 Testing

Since the default installation method does not change, no new tests are required. However, developers
may choose to add new jobs on per distribution basis to test the new installation method.

6.3.5 Documentation impact

Documentation needs to be modified to explain how to use the distribution installation method.

6.3.6 References

N/A

6.3. Install OpenStack services from distribution packages 37

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

6.4 Refactoring OSA inventory

date
2018-04-12 22:00

tags
osa, inventory

The inventory as it stands today has been growing in complexity and has only grown organically since
its first implementation in icehouse. Given that Ansible has changed a lot and has added capabilities
which were not available in those early versions, it is time to take a step back and look at how it can be
re-worked to reduce technical debt and make it easier to maintain.

6.4.1 Problem description

The current OpenStack-Ansible inventory provides the following features:

• Assignment of hosts into groups

• Generating the group structure

• Assigning host variables

• Generating container inventory_hostnames

• Assigning and tracking container IPs based on cidr_networks, reserved IPs, and already allocated
IPs.

All these features are included into a single dynamic inventory script, because at the time of its creation,
only one inventory was allowed at a time in an ansible cli call.

The dynamic inventory shipped by OSA is core of the functionality of OpenStack-Ansible, yet it is not
well understood, neither by the core maintainers nor by new contributors.

As a result, the inventory has grown organically, both in code and in memory usage (changes in the way
we deploy things, adding new groups, adding edge cases), and has not seen much maintenance to reduce
its scope or the technical debt.

At this point, due to a lack of tests and the complexity of the code, it is difficult to work on without
causing hidden breakages which are often only found months later. Adding tests is unrealisticly hard for
this legacy code.

The problems can therefore be summarized in a few points:

• The inventory needs to be cleaned up of unnecessary groups and assignments, but it is difficult to
clean up effectively without causing hidden breakages.

• We have to carry code in openstack-ansible that is not actively maintained

• We have to execute code thats not actively audited, while it would be technically possible to avoid
the execution of code with very few limitations for the end-user.

• Introducing tests to verify regressions was attempted during the Newton, Ocata and Pike devel-
opment cycles - but that has done nothing more than increase the code complexity and has done
nothing to improve the reliability.

38 Chapter 6. Rocky Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

6.4.2 Proposed change

Now that we are using Ansible 2.4, we can:

• Stack inventories together, and therefore we can split inventories into smaller inventories if neces-
sary

• Import, and convert inventories to a more readable format.

What I am proposing is to use static files for inventory. It is easier for people to edit the inventory, and
review it. Its easier to manipulate, and doesnt require our code to run or edit it.

Host vars, group vars, and inventory structure would be static files, and slimmed down to the minimum.

Here are two example of slimming down (hosts vars, and inventory):

• For me, the features to track proper IP assignment is the scope of a CMDB/IPAM. We shouldnt
reinvent the wheel there. Instead this should be spun out of the inventory. People should either:

– use the old inventory to keep the same features, but we add a warning that the code is depre-
cated

– provide their own IP addresses in a static file

– provide their own dynamic inventory script or use a lookup to fetch data from their IPAM.

With the generation of IPs outside the scope of the inventory, we could simplify the dynamic
inventory further.

• For me, the groups like haproxy, haproxy_all, haproxy_hosts or haproxy_containers are all con-
fusing. Some are used interchangeably, which led to bugs. The proliferation of groups is only due
to our inventory. These can all be consolidated into a single group, by changing the playbooks and
roles. This is not only restricted to haproxy, and this pattern of group reduction should be extended
to all our inventory.

So, at first we need to keep the same configuration style (conf.d/env.d/openstack_user_config). The gen-
erated json would then go through a script to generate and clean the static files.

That script would be part of the deploy and upgrade process.

Later, we could re-think the conf.d/env.d/openstack_user_config, or keep it the same but completely
change the underlying code. That wouldnt be a problems, because it could be done on the side, as
a different inventory system. We would have, on the way, documented the input and outputs of the
inventory, which could then be used for building test cases.

Alternatives

Do nothing

6.4. Refactoring OSA inventory 39

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

Removing references to old inventory data like old groups. Use lookups or ansible_facts better to reduce
the amount of hostvars.

Upgrade impact

Because our inventories are already in a bad state, we already have hosts in the wrong groups.

Upgrade would need to run the tool to migrate the groups to the new groups presented in the playbooks.

Security impact

By ultimately shipping less code, we would marginally improve our security.

Performance impact

• Moving from dynamic to static file with the same format doesnt change performance

• Moving from static json to static yaml may or may not improve performance in your deployment
by reducing memory usage. It fully depends on the inventory. Large inventories are more likely to
lose performance by switching to yaml for the same input.

• Cleaning up the inventory have a positive performance impact.

End user impact

The end users will not notice any change.

Deployer impact

The deployer will have a different user configuration to deal with (static files)

Hopefully it shouldnt be too hard to understand for an existing openstack-ansible user, or an experienced
ansible user.

Developer impact

No change for the development of roles or playbooks.

At the same time we are removing technical debt, we are adding new technical debt by adding these new
tools.

With the hope this tools would be easier to understand, read, review, and having more tests, it would
overall reduce risks for the project.

40 Chapter 6. Rocky Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

None

6.4.3 Implementation

Assignee(s)

Primary assignee:
evrardjp

Other contributors:
None for now.

Work items

Use static files is not without downsides: We are losing some key features if we just use a static inventory
which is created by the user, like the dynamic hostname generation, the dynamic IP allocations.

So I propose the following path:

1. We list the groups required for a successful ansible deploy, and document those in the reference
guide.

Positive improvements:

• For deployers that dont want to use our inventory, we would now have an explicit contract of
what they should do to run openstack-ansible with their own inventory groups

Drawbacks:

• All changes in groups now needs proper documentation

• Thats not enough to come with your own inventory

2. Keep the conf.d/env.d, and dynamic inventory script for now. We use it for generating a
json that stays static during the lifecycle of the cloud, or until re-generated manually. The
env.d/conf.d/openstack_user_config.yml are used as input for this one-off run of the dynamic in-
ventory.

To make sure deployers dont misunderstand the static json file or confuse it with the current open-
stack_inventory.json, we should move the current files to a cache folder, and generated the static
inventory into a inventory folder.

Positive improvements:

• No hidden failures, the generation of the inventory becomes a part of the deploy. We can add
health checks easily.

• Our code run only once, during the generation. Therefore we are not vulnerable to issues
appearing when running multiple ansible simulatenously, or other side effects.

• We keep the container name generation, provider networks, and IP assignments for free.

Drawbacks:

• Edition of static file will not be in sync with conf.d/env.d, but that was already the case with
a manual change to openstack_inventory.json

6.4. Refactoring OSA inventory 41

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• The inventory_manage script becomes useless

3. We provide default child mapping: we create the x_all groups in an easy to read .ini file in the
openstack-ansible repo.

Positive improvements:

• All our users with their own inventory wont have to create EXACTLY the same code to do
child group mapping. Sharing is caring.

• We would cary a lot of empty groups, and maybe people dont need them.

• The mapping could then be used to partially replace the documentation of step 1, and will
fully replace the step 1 documentation when the groups will be cleaned in the playbooks and
roles.

4. We export the host vars into a static files inside the userspace inventory folder.

Positive improvements:

• Having static yaml files will make it easy to see repetitions, and things that can move to group
vars

Drawbacks:

• More static files to maintain by the deployer. If we change a host var, we could change the
inventory and it was applied everywhere. It would not be the case anymore.

5. We write a tool manipulating the inventory json. By default, that tool would:

• discard all the groups that arent listed in the reference guide

• discard all the _all groups from the inventory, as they would not be required in the json
anymore (handled at a previous step)

• discard all the host variables (handled at a previous step)

• discard groups that can be generated from facts/host variables, like all_containers (using
group_by would provide the same result).

Positive improvements:

• The inventory would be lighter, and therefore require less memory to run. It would also run
faster and require less computing power.

Drawbacks:

• All the changes in groups now require a modification of said tool, so a good design is neces-
sary to make it easy to change.

6. We document a list of the expected and required host/groups variables.

7. We remove all the unnecessary group and host variables that were part of the inventory but arent
important anymore by using/providing a tool manipulating variable files (yaml), or by providing
release notes.

8. We document how to export the cleaned up inventory into a new YAML file.

9. The generation of conf.d, env.d, and openstack_user_config becomes totally optional at this point:
We know what is required in a build, and ask deployers to provide their own group/host mapping.

At this point its optional because:

42 Chapter 6. Rocky Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

1. Assignment of hosts into groups can be done by the user with a simple .ini/.yaml file + doc-
umentation

2. Standard group structure is provided by default

3. We have documented the list of host variables, so they can be provided by the user

4. Generating container with their inventory_hostnames can be done by the user. Its just a series
of host variables: ansible_host, container_name, container_tech, physical_host. It can even
be done with a add_hosts and a loop based on a new variable like container_names (property
of the host).

5. Assigning and tracking container IPs based on cidr_networks, reserved IPs, and already allo-
cated IPs are also host variables. Deployers are responsible to provide an IP for their contain-
ers. Example, the lxc_container_create role creates IP, network, and interfaces configuration
based on lxc_container_networks_combined, which a variable taking information from the
inventory, by combining default lxc_container_networks with the container_networks vari-
able, which is part of the inventory. Note: this part can be later replaced by a lookup. By using
a lookup, we would simplify the inventory, by completely removing its container networks
of the host vars.

10. We provide a script that runs all these actions for the user, but also allow step by step editions and
manipulations.

11. We provide a new tool to generate a new kind of inventory based on what we learned from users,
which wont necessary use the openstack_user_config, conf.d, or env.d. But we have all the time
we need to do it better, because the expected inventory is not the same as the one we did the past.

12. We spin the old inventory out.

6.4.4 Testing

All the work items would be separately tested in the integrated gates.

6.4.5 Documentation impact

Large. The inventory would need a refactor to explain the expectations for people coming with their
inventory, and for people that will use our generation tool. At the last step, if another tool is provided, it
would also require documenting.

Each step would require modifying the reference, and maybe the operations guide.

6.4.6 References

None

6.4. Refactoring OSA inventory 43

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

44 Chapter 6. Rocky Specifications

CHAPTER

SEVEN

QUEENS SPECIFICATIONS

7.1 Generalize Infrastructure Roles

date
2017-09-10 14:00

tags
ansible, roles, mariadb, rabbitmq

Provide a synopsis as to why you are creating this spec/blueprint.

Include the URL of your launchpad blueprint:

• https://blueprints.launchpad.net/openstack-ansible/+spec/ansible-roles-reuse

Currently openstack-ansible is maintaining infrastructure roles that are used to deploy general infrastruc-
ture services such as MariaDB and RabbitMQ, which are applicable in non-OpenStack ansible environ-
ments also. With little to no refactoring these roles can be used to deploy the services in other Ansible
managed environments also.

By maintaining robust, generalized service roles, they are more likely to be consumed, improved, and
maintained by other operators in the greater Ansible community. This will benefit us by training us to
keep a modular mindset when building the roles, which leads to better maintainability and wider testing
for OSA consumers also.

In some cases we may wish to deprecate our openstack-ansible roles and consume more generalized
upstream alternatives.

7.1.1 Problem description

In some of the roles (such as haproxy), we implement a very OSA specific deployment with very little
reusability or configurability for a typical HAProxy deployer.

Other roles, such as Galera server, are fairly generalized and robust, but carry the openstack-ansible-
service_name naming scheme, making it less likely for anyone NOT using openstack-ansible to use the
role in their deployments.

pip_install is an example of a role that will require some minor refactoring to generalize it. The role
performs some very out of scope tasks, such as repo management, which have nothing to do with installing
pip. These features should be moved to appropriately modularized roles (a general repo management
role?), so that pip_install is only doing the work it is meant to do.

45

https://blueprints.launchpad.net/openstack-ansible/+spec/ansible-roles-reuse

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.1.2 Proposed change

Examine the following roles to identify and refactor out of scope tasks and orchestrate openstack-ansible
specific configurations at the integrated repo level. If the role is built properly it should offer the necessary
service configuration to be injected from the inventory and playbooks.

Roles to examine initially:

• openstack-ansible-pip_install

• openstack-ansible-lxc_hosts

• openstack-ansible-lxc_container_create

• openstack-ansible-haproxy_server

• openstack-ansible-memcached_server

• openstack-ansible-galera_server

• openstack-ansible-rabbitmq_server

• openstack-ansible-ceph_client

Once the work outlined above has progressed sufficiently, we should consider renaming some of the roles
to a more appropriate naming, ie. openstack-ansible-galera_server becomes ansible-mariadb-cluster, etc.

Alternatives

N/A

Playbook/Role impact

The playbooks and especially inventory should eventually contain all of our openstack-ansible specific
configurations. The infrastructure roles themselves should be generalized without an assumption or skew
toward being consumed only by openstack-ansible.

In some cases this is already implemented, but in other cases the role will undergo significant changes
or wholesale replacement to accomplish this.

Upgrade impact

Consumers of the roles will need to adjust to any major refactorings that take place, including possible
renaming of the git sources and role names.

46 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

N/A

Performance impact

N/A

End user impact

N/A

Deployer impact

Deployers who work frequently with openstack-ansible will benefit from the ability to use the same roles
to deploy applicable services for other projects they work on besides OSA.

Developer impact

It is possible that this could draw more developers to assist in maintaining some of the roles. Cosmetic
changes such as renaming may also help veteran OSA developers take a more abstract approach when
crafting changes to these roles, which should make them more maintainable in the long run.

Dependencies

N/A

7.1.3 Implementation

Assignee(s)

Primary assignee:
Logan Vig (LP: loganv; IRC: logan-)

Work items

• Examine the infrastructure roles for out of scope tasks or reusability concerns. Address the issues
by refactoring or replacing the role.

• Improve the role documentation if necessary with example playbooks demonstrating ad-hoc usage
of the role.

• Rename the role and repo to a globally namespaced ansible role such as ansible-service-name.

7.1. Generalize Infrastructure Roles 47

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.1.4 Testing

N/A

7.1.5 Documentation impact

Improving and expanding the role documentation will be beneficial for reusability also.

7.1.6 References

• openstack-ansible 5/18 community meeting: http://eavesdrop.openstack.org/meetings/openstack_
ansible_meeting/2017/openstack_ansible_meeting.2017-05-18-16.01.log.html#l-136

7.2 Integration of Blazar with OpenStack-Ansible

date
2017-12-17 00:02

tags
openstack, blazar, opnfv, promise

Blazar is a resource reservation service for OpenStack. It is used to book or reserve specific resources
for a particular amount of time. This spec outlines the steps required to integrate Blazar with OpenStack-
Ansible.

7.2.1 Problem description

Blazar is used to reserve OpenStack resources in advance for a specific amount of time. However, it
needs to be installed manually with OpenStack-Ansible. No role exists to deploy it as other services are
deployed.

7.2.2 Proposed change

The change consists of creating a new role for Blazar integration with OpenStack-Ansible. It will make it
possible to deploy Blazar as part of the installation of OpenStack-Ansible, rather then requiring to install
and configure it manually.

Alternatives

There are no alternatives.

48 Chapter 7. Queens Specifications

http://eavesdrop.openstack.org/meetings/openstack_ansible_meeting/2017/openstack_ansible_meeting.2017-05-18-16.01.log.html#l-136
http://eavesdrop.openstack.org/meetings/openstack_ansible_meeting/2017/openstack_ansible_meeting.2017-05-18-16.01.log.html#l-136

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

This is a new feature added into OpenStack-Ansible. No role currently exists. Therefore, a new role,
openstack-ansible-os_blazar needs to be written from scratch.

Upgrade impact

No upgrade impact.

Security impact

No security impact.

Performance impact

No performance impact.

End user impact

End user will be able to use Blazar out of the box, without going through any manual installation and
configuration. One of the endusers is Promise, an OPNFV project, which is using Blazar, in an NFV
context.

Deployer impact

No impact.

Developer impact

Little or no impact, since this feature will be optional and can be safely ignored.

Dependencies

No dependencies.

7.2.3 Implementation

Assignee(s)

Primary assignee:
Taseer Ahmed (Taseer)

Other contributors:
Fatih Degirmenci (fdegir)

7.2. Integration of Blazar with OpenStack-Ansible 49

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

Blazar is not available as a service for OpenStack-Ansible. No role already exists. A new role will be
developed from scratch in compliance with the standards set by the community. The steps for developing
this new role are as follows:

1. Create a new repository on GitHub.

2. Add tasks to the role.

3. Add tests for the new role.

4. Ensure that the role works well with AIO.

7.2.4 Testing

Tests will be developed to ensure that deployment of Blazar works and also to test the functionality of
the deployed service.

7.2.5 Documentation impact

As this would be new feature added to OpenStack-Ansible, it needs to be documented, explaining all the
configuration parameters.

7.2.6 References

Blazar Overview

• https://wiki.openstack.org/wiki/Blazar

Blazar Installation steps

• https://docs.openstack.org/blazar/latest/install/install-without-devstack.html

OPNFV Promise

• https://wiki.opnfv.org/display/promise/Promise

7.3 Integration of Congress with OpenStack Ansible

date
2017-08-30 00:02

tags
openstack, congress

Blueprint on Launchpad:

• https://blueprints.launchpad.net/openstack-ansible/+spec/role-congress

Congress is the policy framework for OpenStack. This spec introduces the work required to deploy
Congress, as a service for OpenStack Ansible.

50 Chapter 7. Queens Specifications

https://wiki.openstack.org/wiki/Blazar
https://docs.openstack.org/blazar/latest/install/install-without-devstack.html
https://wiki.opnfv.org/display/promise/Promise
https://blueprints.launchpad.net/openstack-ansible/+spec/role-congress

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.3.1 Problem description

There are many policy frameworks for OpenStack. However, very few of them come with OpenStack
Ansible. They need to be manually configured and installed. The aim of this spec is to deploy Congress
with OpenStack Ansible, provided as a service to OpenStack Ansible and OpenStack users in general.

7.3.2 Proposed change

The change consists of integrating Congress with OpenStack Ansible during deployment phase of Open-
Stack.

Alternatives

Many policy frameworks for OpenStack exist. Tacker is one of them and has already been integrated with
OpenStack Ansible. However, Tacker is more of a VNF Manager, mostly used for NFV related activites
such as Service Function Chaining etc.

Playbook/Role impact

This is a new feature being introduced.An existing role does not already exist. A new role will be devel-
oped, e.g openstack-ansible-os_congress. This new role will be developed as per the steps outlined by
the community.

Upgrade impact

No upgrade impact since this would be the first time implementation of the proposed change.

Security impact

No security impact.

Performance impact

Performance impact should be very low, it only needs a few preliminary packages.

End user impact

Congress uses a simple declarative language to define real world policies. Currently it needs to be man-
ually configured and deployed. This feature would enable the users to use Congress as a service, and be
able to manage OpenStack more efficiently.

7.3. Integration of Congress with OpenStack Ansible 51

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

No default policies will be enforced. If the deployer chooses to enable Congress service, policies need
to be defined as per the requirements.

Developer impact

Little or no impact, since this feature will be optional and can be safely ignored.

Dependencies

No dependencies.

7.3.3 Implementation

Assignee(s)

Primary assignee:
Taseer Ahmed (Taseer)

Other contributors:
Fatih Degirmenci (fdegir)

Work items

Congress is not available as a service for OpenStack Ansible. No role already exists. A new role will be
developed from scratch in compliance with the standards set by the community. The steps for developing
this new role are as follows:

1. Create a new repository on GitHub.

2. Add tasks to the role.

3. Add tests for the new role.

4. Ensure that the role works well with AIO.

7.3.4 Testing

Tests will be developed to ensure that deployment of Congress works and also test the functionality of
the deployed service.

52 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.3.5 Documentation impact

As this would be new feature added to OpenStack Ansible, it needs to be documented, explaining all the
configuration parameters.

7.3.6 References

Congress Overview

• https://wiki.openstack.org/wiki/Congress

Congress Installation steps

• https://docs.openstack.org/congress/latest/install/index.html#separate-install

7.4 Implement deployment stages for optimised execution

date
2017-09-14 12:00

tags
optimise, lifecycle

In order to improve ease of use, optimise execution and provide the ability to make use of pre-built
artifacts in deployments this spec proposes the implementation of deployment stages.

• https://blueprints.launchpad.net/openstack-ansible/+spec/deployment-stages

7.4.1 Problem description

• In production environments with many target hosts there are sometimes transient failures that hap-
pen. When they happen the deployer is forced to re-execute playbooks which may go through many
tasks which are already complete and do not need to be executed again. While a knowledgable de-
ployer will make use of tag skipping and host scoping to reduce the execution time, this is not a skill
the novice deployer has. In order to improve ease-of-use it should be possible for the playbooks to
simply skip over the stages which have already completed on each host.

• In production environments it may be desired to make use of a fully artifacted deployment in order
to ensures that multiple regions are deployed using exactly the same software. Currently there is no
tooling included to facilitate the complete stack of artifacts (apt, git, python, container) that need
to be built.

• Deployments currently do a lot of outgoing internet interaction in order to fetch packages, keys
and other artifacts. The outgoing access is often a problem for deployers with a high security
environment as the hosts are not able to access the internet directly. This access is also slower than
it would be if these artifacts were locally staged before deployment.

• Deployments currently mix the build of artifacts with their installation and activation. This results
in very long deployment times which often exceed maintenance periods available for operations. If
the artifact build process could be executed and the artifacts could be staged without operationally
impacting a production environment, then these could be executed prior to a maintenance slot
and only the final step of implementing changes to use the new artifacts could be done in the
maintenance slot.

7.4. Implement deployment stages for optimised execution 53

https://wiki.openstack.org/wiki/Congress
https://docs.openstack.org/congress/latest/install/index.html#separate-install
https://blueprints.launchpad.net/openstack-ansible/+spec/deployment-stages

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Deployments currently do a lot of staging actions in serial due to the combined install/config tasks
in each role. This takes a very long time and is not necessary. If the build and stage tasks are
properly split from the configuration changes then the build/stage tasks could be executed in parallel
and only the configuration changes executed in serial, significantly speeding up large deployments.

7.4.2 Proposed change

The stages proposed are as follows:

1. Build: This stage prepares artifacts which are general purpose. This stage could be executed by a
CI process in order to prepare the appropriate artifacts and stored on a server to be used across mul-
tiple regions. Alternatively it could be executed in-line for a single build (using developer_mode.
Artifact examples include distribution software packages, container rootfs tarballs, python venvs,
etc. If not executed in-line, the build process should be executed on any designated host and pro-
duce artifacts which can be copied to a web server. There must be a well defined manifest detailing
the artifacts produced which can easily be used for a staging process to understand which items to
fetch.

2. Stage: This stages all artifacts from the Build stage using the manifest produced. The stage is op-
tional and will only be executed if the Build stage was executed to build all artifacts. The stage will
most likely only be a playbook rather than something in the role, making it easy to allow deploy-
ers to implement alternative staging mechanisms if they choose to. This stage will be executed in
parallel across all hosts/containers to ensure that it executes quickly.

3. Install: This stage executes the code path which uses the staged or built artifacts and the prepared
OSA configuration to create containers and install all services. This process should not restart
containers or services or enact any changes to an existing environment which will disrupt it. This
stage will be executed in parallel across all hosts/containers to ensure that it executes quickly.

4. Configure: This stage executes the implementation of configuration changes to configuration files
and starts/restarts the applicable services or containers. This stage will be executed serially to
ensure that service disruption is minimised.

The tasks for each stage will be explicitly broken into task files, for example:

• <service>_build.yml

• <service>_install.yml

• <service>_install_apt.yml

• <service>_install_nginx.yml

• <service>_configure.yml

• <service>_configure_nginx.yml

• <service>_configure_ssl.yml

• <service>_configure_keys.yml

The general idea with breaking out the task files is to implement conditional and/or dynamic inclusions
where appropriate to ensure that the tasks are not even evaluated unless a broad condition is met. This
is different to having a bunch of tasks in a single file which all have conditions because Ansible will not
have to evaluate each task in turn, but instead evaluate whether a block of tasks should be evaluated. This
reduces execution time.

Some examples:

54 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

1. If pre-built artifacts are available when the role executes, skip the build stage tasks.

2. If there is no repo server in the environment, do not try to download any python venvs or other
artifacts.

3. If ansible_pkg_mgr == 'apt', do not evaluate any tasks related to yum.

As part of this solution, the build and install stages should drop local facts on to target hosts when the stage
completes. The local fact will prevent that stage being executed again through a conditional include. This
provides a checkpoint restart mechanism so that if a deployer executes setup-everything the execution will
be much faster because it will skip whole stages and continue from where it left off. This also means that
if pre-built artifacts are used, these stages will be skipped and the deployment in an environment will be
much, much quicker.

The facts dropped would be tag-specific - for example the fact dropped would indicate that the cinder
service has the 14.2.0 release installed on the host, meaning that the build and staging tasks do not need
to be run if the proposed tag and the tag deployed are the same. This behaviour will be overridable via
another variable which enables a forced rebuild or forced reinstall.

Alternatives

1. Put up with long deployment times.

2. Document in better detail how to reduce deployment times using package mirrors, proxies and
such.

Playbook/Role impact

New playbooks will be implemented which allow the deployer to executed the more targeted build process
and to prepare the artifacts. The existing playbooks will continue to work, but will be adjusted to make
use of the appropriate facts to skip the previously executed build process if that has already been executed.

The roles will be where the greatest impact will be as many of the tasks will be re-organised to facilitate
the staged process.

Upgrade impact

Being able to make use of pre-built artifacts for an environment will mean that an upgrade process should
be able to more easily roll back to a previous state if need be.

Security impact

As this process will improve the ability to ensure a consistently built environment, this will likely improve
the security posture of a deployment.

7.4. Implement deployment stages for optimised execution 55

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

Hopefully the deployment and upgrade performance will be far better than it is now. The running de-
ployment performance should be no different.

End user impact

There will be no difference to end-users of the deployed OpenStack environment.

Deployer impact

Deployers will continue to have the same entry points, but will gain the ability to pre-build artifacts for
their environment in order to ensure that deployments and upgrades execute more quickly and reliably.

Developer impact

These changes should improve the developer experience by reducing the time taken to implement an AIO.

Dependencies

None

7.4.3 Implementation

Assignee(s)

Primary assignee:
jesse-pretorius (odyssey4me)

Work items

Each of the roles implemented in the default AIO will be worked through in sequence to re-arrange and
optimise based on this workflow. The work items are not being detailed here but will be reflected in gerrit
through the blueprints topic and will be visible in launchpad.

7.4.4 Testing

It may be possible for us to make use of pre-built artifacts for gate testing in order to reduce the time
take for integrated tests. The option of publishing the last successful builds artifacts for each branch on
OpenStack Infrastructure will be explored. These artifacts will be for development tests only and not
useful for production environments.

56 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.4.5 Documentation impact

The staged deployment process will need to be documented and the details of how to opt-in to make use
of an artifacted build will need to be included.

7.4.6 References

None

7.5 Documentation improvements

date
2018-01-08 22:00

tags
docs, user stories, walkthrough

Include the URL of your launchpad blueprint:

• https://blueprints.launchpad.net/openstack-ansible/+spec/example

People are often confused when they deploy with openstack-ansible, because they only partially read the
documentation, or landed on the wrong documentation.

Our deployment guide is already close to what I call a wizard/ walkthrough, but some parts are easily
missed by the deployers.

On top of that, some very nice advanced documentation are often skipped, or arent promoted to their
right value.

7.5.1 Problem description

When people land on our deployment guide, which is probably the first link they access, whether they
come from the OpenStack deployment guides https://docs.openstack.org/pike/deploy/ or from our main
developer page https://docs.openstack.org/openstack-ansible/latest/ , they are facing the following issues:

• The landing page is overwhelming, as its a series of link. What do you click?

• The first links clicked (example: https://docs.openstack.org/project-deploy-guide/
openstack-ansible/pike/overview.html#) is just more clicks towards content, and doesnt pro-
vide any useful information (the structure is already displayed on the left side of the page).

• Anyone wanting to quickly deploy an openstack-ansible cloud has no way to know we have an AIO
toolkit that could help.

• Anyone wanting to deploy a production cluster with Netapp for example will most likely not find the
appropriate documentation while reading the deploy guide: Its easy to miss the importance of con-
figuration on https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/configure.
html#advanced-service-configuration

• The AIO is listed in the contributor guides, where it could be available on any deployment part.

• There is an hard to find advanced configuration section, hidden inside the operations guide. It
should probably be an appendix of the deploy guide.

7.5. Documentation improvements 57

https://blueprints.launchpad.net/openstack-ansible/+spec/example
https://docs.openstack.org/pike/deploy/
https://docs.openstack.org/openstack-ansible/latest/
https://docs.openstack.org/project-deploy-guide/openstack-ansible/pike/overview
https://docs.openstack.org/project-deploy-guide/openstack-ansible/pike/overview
https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/configure.html#advanced-service-configuration
https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/configure.html#advanced-service-configuration

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• We have many overlaps of documentation doing about the same thing, we should clean things up
(for example the advanced configurations in deploy + operations, the inventory in operations +
contributors + reference)

• There are too many appendices in the deploy guide. Some deserve their own section. According to
the spec http://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html,
end-user content such as concept guides, advice, tutorials, step-by-step instructions for using the
CLI to perform specific tasks, etc. I think we could technically move scenarios there, as they are
step-by-step instructions using shell scripts to perform some specific deploys.

• The role maturity is hard to find. If I were a new deployer, Id like to know what I could do with
OpenStack-Ansible, and the role maturity matrix would tremendously help. Sadly Id never see it
in my first read of the documentation.

• The upgrade guide is our user guide. Why not considering upgrades as a specific kind of operation?
In my opinion, it should be part of the operations guide, as a major chapter in the operations, in
the same way as minor updates, or scaling the environment.

• We dont motivate people to contribute back directly from the deploy guide. The last step after
verifying that the system works should be how to extend and contribute to OpenStack-Ansible.

• People could be confused on how to best contribute to the project.

7.5.2 Proposed change

Have some kind of notice at the beginning of the deploy guide, pointing to our user stories (but advising
to read the deploy guide first). The first user story would be the AIO, with the quickstart AIO content,
for those who want devstack-like easiness, developers, or for those who want to prototype. Add more
user stories into the user guide, for ceph (test, prod and ceph-ansible integration), for l3 routed scenarios
(tests and prod), for offline installs.

Move advanced topics like inventory, container networking, custom layouts and security principles into
a new reference section of the documentation. This section should probably hold the links to roles doc-
umentations, and should also be linked from the deploy guide where appropriate.

Highlight the importance, in the deploy guide, of our advanced topics (reference). Its important for new
deployers to know where to find documentation on how to do X thats not part of a user guide.

At the end of the deploy guide, continue the deploy story by pointing to our operations and contributions
guide. That could be added into a next steps section.

The contributors guide can also be enhanced by listing where the help is wanted: docs (and their manually
testing, like for the operational guide), bugs (triaging and fixing the low hanging fruits), test coverage,
This section could be altered when the priorities change.

For improving the reading experience, ensure that each page has a proper structure:

• Only content should appear in the content part of the page

• The chapters should only be in the upper-left section of the page ToC, and pointing to this guide
chapters, not the whole documentation items (avoiding something like https://docs.openstack.org/
openstack-ansible/latest/user/index.html)

• The page headers should only be in the lower-left section of the page ToC.

58 Chapter 7. Queens Specifications

http://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html
https://docs.openstack.org/openstack-ansible/latest/user/index.html
https://docs.openstack.org/openstack-ansible/latest/user/index.html

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

Not changing the docs, or partially implementing those changes.

Playbook/Role impact

None

Upgrade impact

None

Security impact

None

Performance impact

None

End user impact

None

Deployer impact

New deployers should be less overwhelmed by Openstack-Ansible

Developer impact

None

Dependencies

None

7.5.3 Implementation

Assignee(s)

Primary assignee:
jean-philippe-evrard

Other contributors:

• TODO

7.5. Documentation improvements 59

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

Each paragraph of the proposed change can be considered as a work item.

7.5.4 Testing

Nothing new.

7.5.5 Documentation impact

This is a docs only change, so this whole change has a documentation impact. However, because we dont
change the structure of the docs themselves, it should not be very difficult to implement.

7.5.6 References

This improvements only happen to improve our readability, and to follow whats generally expected to
find in each of the documentations:

7.6 ELK Stack

date
2017-12-11 11:00

tags
logging, monitoring, operations

Blueprint on Launchpad:

• https://blueprints.launchpad.net/openstack-ansible/+spec/elk-stack

Log file analysis is an important part of maintaining and troubleshooting OpenStack clouds, but using
traditional single server methodology to analyze the logs on clouds with tens, hundreds or thousands of
servers can become problematic and unwieldy. By leveraging the search, collation and analysis features
of the ELK (Elasticsearch1, Logstash2 and Kibana3) stack we can provide a cloud level view of all of
the log files. The ELK stack also provides the ability to correlate log messages across various services,
perform detailed log analysis and do trending based on metrics derived from log messages.

1 https://elastic.co/products/elasticearch
2 https://elastic.co/products/logstash
3 https://elastic.co/products/kibana

60 Chapter 7. Queens Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/elk-stack
https://elastic.co/products/elasticearch
https://elastic.co/products/logstash
https://elastic.co/products/kibana

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.6.1 Problem description

For deployers and operators findings specific events in the myriad log files produced by the various
OpenStack, system and ancillary services can be tedious and error prone. With traditional tools the
possibility of missing critical log entries grows as the size of the cluster increases. Log file analysis
provides vital information about the state of the OpenStack services as well as the underlying hardware.
Currently there are no tools provided by OpenStack-Ansible to detailed log analysis, correlation and
trending.

7.6.2 Proposed change

Utilizing the logging/utility node we install the ELK stack in containers, logs are shipped from the in-
dividual nodes/containers using the Filebeat package. Using Filebeat to perform the initial log shipping
allows us to do initial multiline parsing distributing the load away from a single Logstash container. Ver-
sion requirements of the ELK packages will be maintained in the ELK roles and barring security fixes
the major version of those packages should not change during the release cycle of Openstack. The ELK
roles are consumed via Ansible Galaxy pointing to specific SHAs.

Notable changes:

• Create 3 containers on the logging/utility node, one each for Elasticsearch, Logstash and
Kibana. (Additional containers can be created to facilitate HA if needed.)

• Install the Filebeat package on all nodes/containers

• ELK and Filebeats galaxy role SHAs added to ansible-requirements.yml

Alternatives

Logs are currently shipped to a centralized rsyslog-server container on the logging/utility server allowing
for some sort of centralized log parsing using command line utilities. There are other 3rd party solutions
with various levels of cost, adoption and support.

Playbook/Role impact

The changes required are located in stand alone playbooks. Additional roles will need to be created
for Logstash, Kibana and Filebeat, the ansible-elasticsearch‘4 maintained by elastic.co provides Elastic-
search. Configuration can be stand-alone or integrated into the user-variables.yml and user-secrets.yml
files.

Upgrade impact

As this is the initial implementation there is no upgrade impact. Future versions will require upgrade
planning as it may be necessary to upgrade versions of the ELK packages, OpenJDK packages and pos-
sibly the Elasticsearch database itself.

4 https://github.com/elastic/ansible-elasticsearch

7.6. ELK Stack 61

https://github.com/elastic/ansible-elasticsearch

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

This software provides a web based front end as well as API access to any information contained in
the Openstack, service and system logs that are shipped to it. As such it will need to be only visible to
authenticated users. All access can be secured through the traditional hardening that is applied to any
standard web service, namely TLS and an authentication mechanism. Furthermore since the ELK stack
is behind a VIP we can limit access to certain IPs and/or networks via a number of ACLs.

By default logs are shipped in plaintext, it is possible, however, to enable SSL encryption on this transport
should it be needed.

Performance impact

Based on testing and real-world analysis the largest performance impact will be on the logging/utility
server. As this devices original intent was to perform log processing this is expected and not unusual.
The filebeat service running in each node/container has demonstrated a negligible performance impact,
but certain best practices such as limiting logging levels and eliminating tracebacks in the logs will help
maintain the light footprint. Filebeat should not impact the operation of any Openstack services as it is
simply a log file processor/shipper, although network utilization could be a concern should debug logging
be enabled on a particularly busy service.

Elastic.co is the maintainer of all of the software other than Java, which is maintained by Oracle corpora-
tion. Both of these entities provide enterprise software and thus follow strict release schedules and have
reliable upstream repositories for their software.

End user impact

End users should not notice the changes from this work. This is primarily intended for deployers and
operators. This change does give operations teams more insight into the environment and will hopefully
facilitate a more performant and stable deployment.

Deployer impact

The ELK stack is an optional component and does not directly interact with any Openstack services. All
of the ELK packages are provided via apt/yum repositories. An additional secret will need to be created
for the kibana user. The filebeat package will be installed in all containers and on all nodes but it is
extremely lightweight, with configuration stored in /etc/filebeat. Java is required for ELK so the openjdk
(default) or JDK implementation of the deployers choosing will need to be installed in three containers
on the logging/utility node.

Developer impact

This should be a minimal change for developers, the one thing that they will need to keep in mind is if
additional log files are added they will need to be added to the filebeat configuration, this can be handled
by re-running the filebeat play against the containers with the new logs.

62 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

There are no dependencies.

7.6.3 Implementation

Assignee(s)

Primary Assignee:
David Wilde (d34dh0r53)

Work items

1. Create ELK and filebeats roles in openstack-ansible, these roles will be generic enough to be pub-
lished to ansible-galaxy so that they are usable by the Ansible community at large.

2. Create playbook(s) to install the ELK stack and filebeats, these playbooks will install the OpenStack
specific configuration and parsing files.

3. Create testing procedures for the stack

4. Documentation

7.6.4 Testing

The ELK stack should be tested on each commit by ensuring that the services start and that logs are
flowing into the system and being parsed correctly. This can be acomplished by injecting a line into a
services log file and then using the elasticsearch API via curl to verify that the line was correctly inserted
into the database with the expected fields parsed.

7.6.5 Documentation impact

Along with the general installation procedures and configuration the key points of documentation will
be:

• Filebeats parsing rules

• Logstash parsing rules

• Kibana dashboard configuration

• The default Kibana dashboard

• Performance impact and tuning of the ELK stack

7.6. ELK Stack 63

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.6.6 References

7.7 Provide option of hybrid messaging backends

date
2017-09-31 10:00

tags
messaging, rabbitmq, qpid

OpenStack services make use of a message bus system for both remote procedure calls (RPC) between
components and to emit notifications. The aim of this spec is to layout a plan for providing an alternative
to RabbitMQ for RPC messaging.

https://blueprints.launchpad.net/openstack-ansible/+spec/hybrid-messaging

7.7.1 Problem description

RabbitMQ is currently used as the message bus system for all remote procedure calls (RPC) and notifi-
cations of OpenStack services deployed by OpenStack-Ansible. While RabbitMQ is well tested and has
wide acceptance across OpenStack projects and deployments, it may not be the most efficient option for
RPC messaging. A brokerless message queue may provide greater performance of messaging throughput
and be less of a bottleneck, particularly in larger scale deployments.

7.7.2 Proposed change

This spec proposes offering Qpid Dispatch Router as an alternative option for RPC messaging within an
OpenStack-Ansible deployment.

Deployers will be able be given more options for messaging backends:

• RabbitMQ for both RPC and notifications (will remain the default deployment)

• Qpid Dispatch Router for RPC (with no dedicated backend for notifications)

• Qpid Dispatch Router for RPC and RabbitMQ for notifications (hybrid messaging)

Alternatives

Leave RabbitMQ as the sole option for messaging within OpenStack-Ansible deployments.

Playbook/Role impact

Playbooks that deploy OpenStack services will need to be modified to make any required against the
deployers messaging backend of choice. Roles will need to include additional package dependencies to
connect to the Qpid Dispatch Router.

64 Chapter 7. Queens Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/hybrid-messaging

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade impact

An upgrade scenario will test the migration of a deployment from using RabbitMQ.

Security impact

The default deployment of Qpid Dispatch Router should provide as close as possible parity with
OpenStack-Ansibles default RabbitMQ deployment including use of TLS/SSL encryption and virtualhost
namespacing of messaging data.

Performance impact

Especially in larger scale deployments, there is a potential improvement in the throughput of messages
and lowered CPU utilization.

End user impact

When chosen to be implemented by a deployer, the changes involved should be transparent to end users.

Deployer impact

There would be no immediate impact to deployers as the changes involved would be entirely opt-in ini-
tially. For deployers choosing to deploy Qpid Dispatch Router, the service will be installed, likely in a
new container, and OpenStack services will be configured to make use of it.

Developer impact

New roles for OpenStack projects should include configuration options to allow for using either Rab-
bitMQ or Qpid Dispatch Router and testing of each.

Dependencies

N/A

7.7.3 Implementation

Assignee(s)

Primary assignee:
jimmy-mccrory (jmccrory)

7.7. Provide option of hybrid messaging backends 65

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• Create a new role for the installation of Qpid Dispatch Router

• Create a playbook to deploy Qpid Dispatch Router

• Modify OpenStack service configuration templates within each role to allow a transport URL other
than RabbitMQ and default variables to support that

• Add required client package dependencies to roles

• Create test scenarios in the roles to deploy using Qpid Dispatch Router as the messaging backend
for RPC

• Create a common playbook for any Qpid Dispatch Router configuration changes required by indi-
vidual OpenStack projects that the OpenStack project playbooks will consume

• Create test scenarios in the integrated gate for greenfield and upgrade deployments

7.7.4 Testing

A Qpid Dispatch Router scenario would be created within the roles of OpenStack projects which make use
of a message queue and the integrated OpenStack-Ansible repo to ensure installations and deployments,
including upgrades, remain functional.

7.7.5 Documentation impact

Documentation will need to be added for the configuration options of Qpid services, the configuration
options for OpenStack services to make use of Qpid services, and any associated maintenance tasks
within the Operations Guide.

7.7.6 References

AMQP 1.O (Qpid Dispatch Router) Oslo Messaging Driver Reference:

• https://docs.openstack.org/oslo.messaging/latest/admin/AMQP1.0.html

Message Routing- A Next-Generation Alternative to RabbitMQ:

• https://www.youtube.com/watch?v=R0fwHr8XC1I

Hybrid Messaging Solutions for Large Scale OpenStack Deployments:

• https://www.youtube.com/watch?v=o30YaqfLV9A

66 Chapter 7. Queens Specifications

https://docs.openstack.org/oslo.messaging/latest/admin/AMQP1.0.html
https://www.youtube.com/watch?v=R0fwHr8XC1I
https://www.youtube.com/watch?v=o30YaqfLV9A

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.8 Hyper-Converge Containers

date
2017-09-01 22:00

tags
containers, hyperconverged, performance

Reduce container counts across the infra structure hosts.

To lower our deployment times and resource consumption across the board. This spec looks to remove
single purpose containers that have little to no benefit on the architecture at scale.

This change groups services resulting in fewer containers. This does not mix service categories so theres
no worry of cross polluting a different service with unknown packages or unknown workloads. Were only
look to minimize the container types we have and simplify operations. By converging containers were
removing no less than 10 steps in the container deployment process and the service setup. Operationally
were reducing the load on operations teams managing clouds at any scale.

7.8.1 Problem description

When we started this project we started with the best of intentions to create a pseudo micro-service
model for our system layout and container orchestration. While this works today, it does create a lot of
unnecessary containers in terms of resource utilization.

7.8.2 Proposed change

Converge groups of containers found within the env.d directory into a single container where at all pos-
sible. Most the changes we need to get this work done have already been committed. In some instances
we will need to revert a change to get the core functionality of this spec into master but there will be little
to no development required to get the initial convergence work completed.

Once the convergence work is complete we intend to develop a set of playbooks which will allow the
deployer to run an opt-in set of tasks which will cleanup containers and services wherever necessary.
Services behind a load balanacer will need to be updated. Updates to the load balancer will be covered
by the opt-in playbooks provided the environment is using our supported software LB (HAProxy). The
opt-in playbooks will need to be codified, tested, and documented. Should it be decided that the hyper-
converged work is to be cherry-picked to a stable branch, the new playbooks will need to first exist and be
tested within our periodic gates. We should expect no playbook impact in-terms of the general deployer
workflow.

Alternatives

We could leave everything as-is which carries the resource requirements we currently have along with
an understanding that the resources required will grow given the fact OpenStack services, both existing
and net new, are ever expanding.

7.8. Hyper-Converge Containers 67

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

At least one new playbook will be added allowing a deployer to cleanup old container types from the
run-time and inventory should they decide to. The cleanup playbook(s) will be opt-in and will not be
part of our normal automated deployment process.

Upgrade impact

There is no upgrade impact with this change as any existing deployment would already have the all
required associations within inventory. Services would continue to function normally after this change.
Greenfield deployments on the other hand would have fewer containers to manage which reduces the
resource requirements while also ensuring we retain the host, network, and process separation we have
today.

We will create a set of playbooks to cleanup some of the redundant containers that would exist post
upgrade however the execution of this playbook would be opt-in.

Security impact

Security is not a concern within this spec however reducing the container count would reduce the potential
attack surface we already have.

Performance impact

Hyperconverging containers will reduce resource consumption on physical host. Reducing the resources
required to run an OpenStack cloud will improve the performance of the playbooks and the system as a
whole.

End user impact

N/A

Deployer impact

Deployers will have fewer containers to manage and be concerned with as they run clouds for long periods
of time.

• Within an upgrade scenario a deployer will have the option to opt-in to a hyperconverged setup.
This change will have no service impact on running deployments by default.

68 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

N/A

Dependencies

• If were to test the opt-in cleanup playbooks well need a periodic upgrade gate job. The playbooks
would be executed by the upgrade gate job and post results to the ML/channel so that the OSA
development team is notified of the failure.

7.8.3 Implementation

Assignee(s)

Primary assignee:
Kevin Carter (IRC: cloudnull) Major Hayden (IRC: mhayden)

Work items

• Converge the containers into fewer groups

• Create the opt-in container reduction playbooks

• Document the new playbooks

7.8.4 Testing

• The core functionality of this patch will be tested on every commit.

• If the upgrade test dependencies are met we can create a code path within the periodic gates and
test the opt-in cleanup playbooks.

7.8.5 Documentation impact

Documentation will be created for the opt-in container cleanup playbooks created.

7.8.6 References

N/A

7.8. Hyper-Converge Containers 69

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.9 OpenDaylight with BGPVPN support in Neutron

date
2017-11-17 16:30

tags
OpenDaylight,Open vSwitch,neutron,BGPVPN,L3,DC-GW

Blueprint on Launchpad

• https://blueprints.launchpad.net/openstack-ansible/+spec/opendaylight-with-bgpvpn-support

This spec introduces the work required for OpenDaylight configured with BGPVPN through Openstack-
Ansible to enable Openstack deployments with extended L3 support.

7.9.1 Problem description

The support for BGPVPN is available from OpenDaylight since its Beryllium release. Openstack can
make use of this feature by configuring neutron to use BGPVPN service plugin.

“ https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/opendaylight/index.
html “ “ https://docs.openstack.org/networking-bgpvpn/latest/user/usage.html “

In addition to it, quagga/zrpcd and its dependent packages have to be installed along with OpenDaylight
for configuring OpenDaylight as a BGP speaker.

7.9.2 Proposed change

For the configuration of OpenDaylight as a BGP speaker that integrate into deployers infrastructure, a new
OpenStack-Ansible playbook with required ansible tasks for installing quagga and its required packages
will be written. The wiring of the OpenDaylight configuration as a BGP speaker will be done inside the
neutron role, which configures OpenDaylight (see playbook/role impact for details).

The initial supported distros would be CentOS and Ubuntu.

7.9.3 Alternatives

There are other bgpvpn backend drivers available with neutron like BaGPipe, OpenContrail driver and
Nuage Network driver to configure the BGPVPN.

Playbook/Role impact

The new playbook will be added in OpenStack-Ansible which installs quagga and configure OpenDay-
light for BGP speaker. This playbook would get executed after neutron playbook in neutron server node
(in case of ha deployment, among three neutron server containers, one is chosen), because quagga just
needs to get installed in one of the OpenDaylight node and run additional karaf CLI commands to make
it as BGP speaker.

The proposal is to add a extra variable in neutron_plugin_base, overriding the default
ODL behavior, and trigger the usage of BGPVP. When neutron_plugin_type vari-
able set to ml2.opendaylight, neutron_plugin_base list variable having network-

70 Chapter 7. Queens Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/opendaylight-with-bgpvpn-support
https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/opendaylight/index.html
https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/opendaylight/index.html
https://docs.openstack.org/networking-bgpvpn/latest/user/usage.html

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

ing_bgpvpn.neutron.services.plugin.BGPVPNPlugin‘ item, then neutron server node will be in-
stalled/configured with OpenDaylight and Quagga.

Upgrade impact

This is the first implementation of OpenDaylight with Quagga, so no upgrade concerns yet.

Security impact

Networking-bgpvpn configuration requires the setup of a username and password for northbound authen-
tication towards OpenDaylight. The deployer should be able to configure those credentials.

Communication between the controller and the switches will not be secured by default. Using TLS to
secure the communications is considered a stretch goal, and deployers need to consider this security
implication, specially in production environments. For more information on secure communications
between OpenDaylight and OpenvSwitch, see the References.

Performance impact

For those choosing to opt-in this deployment method, some extra packages need to be installed on the
neutron server, which would make installation last a bit longer.

Extra resources are needed to run the OpenDaylight SDN controller on the system as well. However,
performance in Neutron API calls should be minimum.

End user impact

End users would have a new networking and BGPVPN API available through Neutron. This would enable
them to create bgpvpn scenarios (e.g. Router and Network association with BGPVPN). This will require
some documentation with troubleshooting steps to verify that OpenDaylight is working properly, as well
as pointers to OpenDaylights official documentation.

No changes to Horizon or other OpenStack components are expected.

Deployer impact

New artifacts are being deployed, namely the Karaf runtime for OpenDaylight, quagga/zrpcd, thrift and
the networking-odl pip package. OpenDaylight requires around 2.5G of RAM to work properly, with
OpenStack, that would need to be considered when dimensioning the host where it will run.

Also deployers need to ensure that OpenvSwitch with version >= 2.8 is deployed in all networking nodes,
namely compute hosts and hosts where neutron agents are running.

7.9. OpenDaylight with BGPVPN support in Neutron 71

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

Developers have a new playbook to maintain, whose scope is very reduced and not in the path of all
deployments.

Developer impact is very low, all tasks for BGPVPN deployment will be optional and can be ignored.
The tasks wont be skipped, but instead no host will be matched for the new playbooks. This way, if we
put the playbook on the path for every developer/deployer, the impact will be minimum.

Dependencies

There are no dependencies

7.9.4 Implementation

Assignee(s)

Primary assignee:
Periyasamy Palanisamy (epalper) Dimitrios Markou (mardim)

Work items

1. Add new playbook for installing/configuring quagga/zrpcd

2. Task to configure ODL as a BGP speaker

3. Make neutron role to get configured with OpenDaylight BGPVPN driver

4. Create a new test and verify that it passes

5. Document the new functionality

7.9.5 Testing

As a replacement of Neutron backend, this new scenario should provide the same capabilities of existing
backends, so existing tests should be run.

A test specific for OpenDaylight can also be implemented, in the same way as there are currently tests
for Calico or DragonFlow.

7.9.6 Documentation impact

The new scenario OpenDaylight+BGPVPN will be documented, explaining the configuration parameters
required to deploy it.

72 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

7.9.7 References

OpenDaylight scenario with OpenStack-Ansible

• https://docs.openstack.org/openstack-ansible-os_neutron/latest/app-opendaylight.html

• https://git.openstack.org/cgit/openstack/openstack-ansible-specs/tree/specs/pike/opendaylight.rst

packaging and installing quagga/zrpcd packages

• https://github.com/opnfv/apex/blob/master/build/build_quagga.sh

BGP peering with OpenDaylight

• https://github.com/opnfv/sdnvpn/blob/master/sdnvpn/test/functest/testcase_3.py

Enabling BGPVPN mechanism driver at neutron

• https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/opendaylight/index.html

7.10 Python Build/Install Process Simplification

date
2017-09-06 13:00

tags
python, build, source, repo

The current python wheel/venv build process is not easily understood, and the install process has become
complicated. This blueprint aims to work towards making it simpler to deploy, simpler to understand and
to make many of the current features which are forced on all deployers to be opt-in.

Launchpad Blueprint: https://blueprints.launchpad.net/openstack-ansible/+spec/
python-build-install-simplification

7.10.1 Problem description

Building

The Python repository used for OpenStack-Ansible deployments is used to prepare Python wheels for
any git- or pypi-sourced packages for an environment. Using wheels speeds up the installation of the
package and takes away the need to install the distribution packages required to compile the package
when installing.

The repository preparation process also prepares Python virtualenvs for all OSA roles with the prefix
os_ (which are expected to be OpenStack services) in order to speed up the deployment of the services
by downloading a complete virtualenv instead of installing the packages individually for every host that
needs the service.

The py_pkgs lookup, which pulls together the information used by the build process. It is a black box in
terms of what it does, making some decisions about the information it reads and outputs which are not
documented anywhere other than in the code itself. The code is not easily modified without breaking the
process and is therefore most often left alone and not well maintained, resulting in an increasing amount
of technical debt. The subsequent jinja in the repo-build role which processes it is tough to work through

7.10. Python Build/Install Process Simplification 73

https://docs.openstack.org/openstack-ansible-os_neutron/latest/app-opendaylight.html
https://git.openstack.org/cgit/openstack/openstack-ansible-specs/tree/specs/pike/opendaylight.rst
https://github.com/opnfv/apex/blob/master/build/build_quagga.sh
https://github.com/opnfv/sdnvpn/blob/master/sdnvpn/test/functest/testcase_3.py
https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/opendaylight/index.html
https://blueprints.launchpad.net/openstack-ansible/+spec/python-build-install-simplification
https://blueprints.launchpad.net/openstack-ansible/+spec/python-build-install-simplification
https://pythonwheels.com/
https://virtualenv.pypa.io

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

and not easily maintained. While both of these could be adjusted to make use of different plugins or
filters, it would remain a set of black boxes which are complex to untangle.

The way that git repositories are specified and parameters are provided to the build process does
not scale very well. Each git repo requires at least two flat variables to be set (git_repo and
git_install_branch) and can optionally have more set. This model of setting variables makes it
really easy to override individual settings, but requires the use of a pattern match mechanism to discover
all the settings (which is why we use the lookup to do it). The settings are also put in disparate places,
making them hard to find - defaults/repo_packages, role/defaults. It is not very obvious to most new-
comers how to change them and it is not obvious to many veterans what many of the settings mean. It
often requires a lot of code walking to understand the meaning of some settings like venvwithindex
and ignorerequirements.

The git clone process used to fetch the git sources in order to use when building is done asynchronously
in order to improve the time to completion, however individual asynchronous tasks cannot be retried in
Ansible, and the git clones commonly fail. This is an Ansible limitation which we could work around
by implementing our own action module, but this would increase the technical debt as we would have to
constantly keep the module code updated as we update to later versions of Ansible.

When building wheels, pip has no way of resolving all dependencies up-front. The only capability it
has is to resolve the requirements for the current package. It then processes each package requirement
in turn. To do so requires downloading the package and unpacking it to read the requirements. This is a
sequential process and therefore takes a long time when processing packages with a lot of requirements
as is typical for OpenStack projects.

In Kilo the OpenStack requirements management process did not have the jobs which tested the co-
installability of all OpenStack packages and produced the upper-constraints.txt file as a manifest
of which package versions worked together. We therefore needed to do our own processing of all python
packages which would be installed by the roles and had to compile a set of requirements and constraints
across them all for the purpose of building the wheels, and ensuring that the installed set were consistent
for a build. When the OpenStack requirements repository started publishing the upper-constraints file
we adopted it immediately to help keep builds more consistent. However, we still produce our own
requirements_absolute_requirements.txt file which is used for all pip install tasks in order to
ensure consistency and to ensure that the packages we built from git are used (instead of making the
install in the role do the install from the git source, it installs from the wheel held in the repo server).
However this is not practical any more as there are requirements for different services and needs which
are not resolvable down to a common set - we need to be able to allow the installation of any version of
packages and only apply constraints when needed.

Some of the venvs we build do not adhere to the OpenStack requirements process and therefore sometimes
cannot be built using the upper constraints file. There has also been some interest in being able to do
mixed series deployments instead of homogenous deployments. This would involve preparing a venv
containing packages from a different series with a different set of constraints. Currently the constraints
used in the repo build process are global - we only have the ability to enable/disable their use when
building venvs. It would be better to be able to specify a global fallback for constraints, but to allow per
venv constraints too.

The use of Python 2.7 for OpenStack and Ansible is waning and the need to shift everything to use Python
3.5 has arisen as a new requirement. The tooling will need to be shifted to implement the venvs using
Python 3.5 where applicable, but may still need to prepare venvs using Python 2.7 if a service does not
yet support running in a Python 3.5 environment.

In Newton we introduced the ability to do multi-architecture builds to cater for multiple architectures,
then had to also split out multi-distro builds due do wheel/venvs references to C libraries being different
for each distro due to the libraries available being different. Currently this is working, but it makes

74 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

the repo build process much more complex and take a lot more time. The process to synchronise the
per-distro and per-architecture built artifacts is error prone and confuses many newcomers to the project.

In order to facilitate using the repo-server to respond to pip index queries, multiple directories and sym-
links have been used to prepare the appropriate structure so that the correct responses are given back to
pip. The process of setting up all the symlinks is very time consuming and in some places the process
may cause dead links, especially when rebuilding for a specific release tag.

Storing

Once the wheels, venvs and other artifacts are built for an environment they are stored and synchronised
between the repo containers using a combination of rsync and lsyncd. While this sync process is generally
OK, it is commonly a cause for confusion and requires a complex troubleshooting process to figure out
why packages are not present.

Installing

The consumption of the prepared wheels and virtualenvs has changed over time. With the introduction
of developer_mode into the roles there is a lot of code and functionality duplication between the repo
build process and the role installation process.

The need to cater for the optional inclusion of a variety of plugins/drivers in the venvs either through the
use of additional Python packages or by symlinking system packages into the venv (when the package is
proprietary or unavailable via git or pypi) causes further complexity in the process.

When executing a pip installation, pip always looks for packages in the following order: local cache, local
folder, default index, extra indexes. Pip will always check all locations before deciding which to use for
the installation. This means that if there are multiple indexes used, it queries them all. This can be slow
if any of those are not local to the environment.

7.10.2 Proposed change

• Change the repo build process to, by default, only build wheels for git sources it is given without
also building the dependencies. The ability to build all wheels will still be there, but will not be the
default behaviour. This will cut down the time taken in this process when in CI, development envi-
ronments or small online environments where it is not necessary to build/store all the wheels. The
full build will only be necessary for offline deployments and for environments where the deployer
specifically opts-in to ensuring that everything is built.

• Replace the current storage structure for wheels with a flat directory. This directory will be served
via the pypi API provided by the very simple pypiserver application. If we need to continue to
provide per-distro or per-architecture wheels then we could implement distro/arch indexes which
are supplied by individual folders. However, it is unlikely that this will be necessary.

• Use nginx as a reverse proxy which responds to requests from pip by first trying against the local
pypiserver, then against tarballs.openstack.org and then against pypi. This will allow nginx to cache
all downloaded packages (speeding up subsequent requests) without the repo server having build
them.

• Implement changes to the roles to allow service-specific constraints to be applied when building
venvs. This allows a CI process to build service venvs and to publish the list of tested versions for
that service. Then for production builds the published list can be used as a constraint for the venv

7.10. Python Build/Install Process Simplification 75

https://pypiserver.readthedocs.io

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

to ensure that production builds use the same versions. This solves a problem we have today where
some projects (eg: tempest, rally, gnocchi) have to be built unconstrained as they do not conform
to the global requirements process.

• Implement changes to each role to handle the wheel building and venv building, but do it in such
a way that only the build can be executed by using tags, setting a specific flag, or include_role and
tasks_from. The specific dependencies can then be itemised in the role and the role can be used
for artifact preparation.

• Remove all pip install activities from hosts, replacing them with the use of distro packages exclu-
sively for any python requirements on the hosts. We should avoid implementing as many python
packages on the host as possible and focus all efforts on implementing everything we need (in-
cluding the Ansible requirements for targeted hosts) into venvs. All Ansible tasks should then
specifically use the appropriate venv when executing tasks, avoiding the use of any python libraries
on the host. This prevents system package conflicts and will reduce the host package installation
requirements.

• Implement a playbook which is optionally used to prepare pre-built venvs for an environment as
they are today. If a deployer wishes to prepare the venvs in a build process, the playbook should be
exercised in the build process and should be executed on a designated build host which will make
use of ephemeral containers and/or virtual machines on the build host to exercise the builds for the
necessary distribution and architecture combinations.

• Remove the complex git caching/staging process which exists today and make the use of the repo
server for git caching for the services that require it (eg: nova-console uses novnc/spice from git)
entirely optional.

• Implement a playbook which can be used to stage offline installs by downloading all built artifacts
(completed, perhaps by a CI job) to the deployment host, then distributing them appropriately.

• Simplify the constraints management by implementing the use of constraints in the following order:

constraint user-specified-constraints.txt constraint openstack-ansible-pins.txt constraint openstack-
upper-constraints.txt

This would replace the current method which merges the various constraints into one file, requiring
a fair amount of jinja magic because a single file cannot have two constraints and resolve success-
fully into a single result as we need in our current mechanism.

• Implement changes to roles to ensure that the build process and the packages only required when
building (dev headers, etc) are only used when a build is being executed. The build packages and
the runtime packages will be changed into separate lists so that the runtime environment is only
installing the packages it needs.

• Ensure that optional pip packages are installed into the venv during the build stage, rather than
during the install stage.

76 Chapter 7. Queens Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

• The build process can remain as-is, continuing to confuse deployers and difficult to maintain.

• The build process can be changed to only build and store wheels for packages which are pip installed
onto the hosts, and only to build and store the venvs for distribution.

Playbook/Role impact

Playbooks will be added to cater for the build process and the staging process. The roles will be adjusted
to properly separate out the build tasks and the distro packages to install for the build (versus those
required when using pre-built wheels).

Upgrade impact

Care will be taken to ensure that upgrades happen as they do today.

Security impact

The security posture should be improved by the reduction of packages installed onto hosts and containers
when a full set of artifacts are built.

Performance impact

The performance of the deployment should be improved due to the reduction in time taken to deploy with
pre-built packages if a full set of artifacts are built.

End user impact

There is no end-user impact for consumers of an OpenStack cloud, except perhaps that upgrades will be
quicker to execute, thus resulting in reduced maintenance slot requirements.

Deployer impact

• As deployments and upgrades will be quicker to execute, deployers will be able to execute them in
shorter maintenance slots.

• Deployers will need to understand how better to utilise the CI process to prepare the required
artifacts to speed up deployments.

7.10. Python Build/Install Process Simplification 77

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

As the build process will be integrated into the roles, it will be easier to understand how it works and
what it does.

Dependencies

This spec will be implemented in partnership with https://blueprints.launchpad.net/openstack-ansible/
+spec/deployment-stages

7.10.3 Implementation

Assignee(s)

Primary assignee:
jesse-pretorius (odyssey4me)

Work items

Each of the roles implemented in the default AIO will be worked through in sequence to re-arrange and
optimise based on this workflow. The work items are not being detailed here but will be reflected in gerrit
through the blueprints topic and will be visible in launchpad.

7.10.4 Testing

As this process matures, it may be simpler to use the integrated build for all role testing instead of having
two seperate test implementations. This reduces technical debt for the project.

7.10.5 Documentation impact

This work will need to include documentation updates which describe the new way that deployments can
be implemented using full artifact builds and how to implement offline installs.

7.10.6 References

• https://12factor.net/

• http://www.clearlytech.com/2014/01/04/12-factor-apps-plain-english/

78 Chapter 7. Queens Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/deployment-stages
https://blueprints.launchpad.net/openstack-ansible/+spec/deployment-stages
https://12factor.net/
http://www.clearlytech.com/2014/01/04/12-factor-apps-plain-english/

CHAPTER

EIGHT

PIKE SPECIFICATIONS

8.1 Use dnf with CentOS

date
2017-07-28 00:00

tags
centos, dnf, packaging

Blueprint: Use dnf with CentOS

CentOS 7 currently uses yum as its default package manager. However, Fedora has moved to dnf for
several releases and it provides significant performance benefits. It can make the metadata cache, evaluate
dependencies, and handle fastest mirror checks much more efficiently.

The dnf and yum package managers can co-exist together without causing conflicts. Several Fedora
releases ran both of these simultaneously. The dnf packages are available in the EPEL repositories
(which we currently enable). It uses all of the existing yum repositories and GPG keys as well.

8.1.1 Problem description

The CentOS gate jobs are notoriously slow and the integrated gate times out on tempest runs frequently.
The longest running tasks in each role involve the installation of distro packages because these tasks use
state: latest the yum tasks.

When Ansible sees state: latest, it goes through a fairly tedious process:

• Run check-update, which checks the entire system for updates.

• If some packages are returned (they need updates), Ansible searches the list to see if any packages
from the yum task are in that list.

• If some packages need updates, Ansible calls yum to install those packages.

This process can take 5-8 seconds even for one package. In comparison, dnf completes the task in 0.8-
1.6 seconds. This should give us some wiggle room to get CI jobs completed sooner and convert more
of the CentOS jobs from non-voting to voting.

79

https://blueprints.launchpad.net/openstack-ansible/+spec/centos-and-dnf

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.1.2 Proposed change

On CentOS systems, we should install dnf and python-dnf (for Ansible compatibility). Ansible will
prefer dnf over yum, so we would need to ensure that each role has support for dnf tasks. Since both
package managers are interchangeable, this could be done by symlinking the *_install_dnf.yml task
files to *_install_yum.yml and using the package module in those task files.

Alternatives

If dnf isnt preferred, we could avoid using state: latest for CentOS installations. This would cause
CentOS deployments to diverge from Ubuntu and OpenSUSE deployments and it would make bug triage
more challenging.

Another option is to update the entire system when state: latest is provided but switch all of the
package installation tasks to use state: present. This will save us a small amount of time since
Ansible will skip the check-update step and go straight into updating all packages. This would be
another diversion from the Ubuntu/OpenSUSE process, however.

Playbook/Role impact

Each role with a set of yum tasks would need to be converted to use package. A symlink would be
needed so that CentOS systems with dnf installed would use the same tasks.

Upgrade impact

During the upgrade process, dnf would be installed on CentOS systems. Ansible would begin to use
dnf, but the deployer could continue using yum for their own administration tasks if they prefer it.

Security impact

The dnf package manager supports the same configuration options as yum for checking GPG keys of
packages and repositories.

Performance impact

The dnf package manager will provide better performance when managing packages, but the rest of the
system will perform at the same levels.

End user impact

End users will not notice this change or gain any benefits from it.

80 Chapter 8. Pike Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Deployers may notice that some roles use dnf while others use yum until all of the patches have merged.
This wont affect the running system, but it may make some playbooks faster than others.

Deployers would continue to deploy in the same ways that they currently do today.

Developer impact

Developers must be aware that dnf is present on CentOS systems and that Ansible will prefer it over
yum. Any new roles/playbooks or updates to existing ones will need to include support for dnf via the
dnf module or the package module (which selects dnf over yum already).

Dependencies

This spec is not dependent on any other spec or blueprint.

8.1.3 Implementation

Assignee(s)

Primary assignee:
Major Hayden (IRC: mhayden, Launchpad: rackerhacker)

Work items

• Add dnf patches to the base roles first (openstack_hosts, lxc_hosts, etc)

• Continue moving up the dependent roles until all roles include dnf-compatible tasks

• Ensure that the integrated repository and openstack-ansible-tasks use dnf

8.1.4 Testing

The existing testing done in the OpenStack CI jobs will be sufficient for this work. If dnf is not installing
packages properly or efficiently, we will see that reflected in the testing playbooks.

8.1.5 Documentation impact

This work will require some release notes to notify developers and deployers of the dnf change. However,
theres no need for extensive documentation since dnf supports the same configurations and arguments
as yum.

8.1. Use dnf with CentOS 81

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.1.6 References

• Test patch for openstack-ansible-openstack_hosts: https://review.openstack.org/488268

• Vultr docs for dnf on CentOS 7: https://www.vultr.com/docs/
use-dnf-to-manage-software-packages-on-centos-7

8.2 Pluggable Inventory Backends

date
2016-12-13 22:00

tags
inventory, craton

This spec is intended to provide guidance and a longer term goal for migrating the existing inventory
system from a single, coupled filesystem interface to a pluggable system supporting multiple backends
for storage.

• https://blueprints.launchpad.net/openstack-ansible/+spec/inventory-pluggable-backends

Currently, the generated inventory is kept in one place - the /etc/openstack_deploy/
openstack_inventory.json file on the deployment node. While this has worked, it is not very robust.
In order to accommodate more deployer flexibility, the inventory system should be reworked to use a plug-
gable system for storing necessary info. A filesystem plugin would provide backwards compatibility, and
a Craton plugin will also be developed.

8.2.1 Problem description

While there are multiple issues to be addressed in the current codebase, this spec focuses solely on the
storage of inventory facts.

Since OpenStack-Ansibles creation in Icehouse, the source of truth for a completed inventory has been
the /etc/openstack_deploy/openstack_inventory.json file. While this has worked, it has a few
drawbacks:

• As a single file, it may be deleted by accident. If the configuration files have changed, getting an
exact copy back without the tar backup files is impossible due to UUID suffixes.

• There are only UNIX file permissions managing access to the file.

• No accounting of changes, besides a simple tar backup, exists. This is useful for documentation
and auditing of a running cluster.

This spec does not aim to define a fully robust inventory management system. Instead, the OpenStack-
Ansible inventory system can be made more modular, especially in its storage, so that deployers can take
advantage of other, dedicated systems.

Doing so requires refactoring the dynamic inventory generation code so that storage concerns, such as
writing the output and reading output from previous runs, are no longer directly tied to the generation of
values.

82 Chapter 8. Pike Specifications

https://review.openstack.org/488268
https://www.vultr.com/docs/use-dnf-to-manage-software-packages-on-centos-7
https://www.vultr.com/docs/use-dnf-to-manage-software-packages-on-centos-7
https://blueprints.launchpad.net/openstack-ansible/+spec/inventory-pluggable-backends

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.2.2 Proposed change

Any code that interfaces with the filesystem currently will be moved into its own Python module, so
that it exists separate from the generating logic. This work is already happening, and doesnt rely on a
particular plugin system in order to be completed.

Once that is done, a plugin system will be used to provide a generic interface for storage actions to the
rest of the codebase. This code will connect to the plugin library, and return a compatible instance of a
storage plugin.

Plugin Python API

Plugins should support the following public methods:

register
registers a plugin with the plugin system. Receives a dictionary of all arguments specified for
plugins, and should extract any information it needs, such as file locations, connection strings, or
URLs.

load
loads data from source into a Python dictionary in the current dynamic inventory scripts. Source
may be a file, a database, or any other backend system.

write
Writes the inventory dictionary to the specified backend. Receives the inventory dictionary as an
argument

Configuration Changes

Some new configuration will likely need to be presented to the user, so that the appropriate plugins
for storage can be identified. This configuration is not well suited to the etc/openstack_deploy/
openstack_user_config_file, since part of the scripts job entails accessing that file.

Instead, the /etc/ansible/osa.ini file is proposed, to match the style ec2.py scripts method laid out
in Ansibles dynamic inventory documentation.

The specific format of this file will be left to implementation reviews, however at a high level it will
likely include a Python import path to the inventory module to use, and any settings it may need such as
connection strings or API URLs.

Alternatives

Nothing could be done and the inventory could continue to rely on the JSON backend; its worked reliably
until now. However, its inherent problems would remain.

In the current state, deployers must fork the repository to modify the dynamic inventory code, which is a
maintenance burden long term, likely unsustainable.

Alternate inventory scripts could also be placed in playbooks/inventory, either replacing or
adding to the current dynamic_inventory.py file. Replacements may or may not use the current
openstack_user_config.yml file and environment structure. Additional scripts would produce out-
put merged from all sources, read using os.listdir and then processed according to alphanumerical
file name.(see the Ansible script loader).

8.2. Pluggable Inventory Backends 83

http://docs.ansible.com/ansible/intro_dynamic_inventory.html#example-aws-ec2-external-inventory-script
https://github.com/ansible/ansible/blob/392232895491aca2e4f65331131103f4f2ea5b7d/lib/ansible/inventory/dir.py#L95-96

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Configuration Alternatives

Rather than the /etc/ansible/osa.ini file, environment variables could be used to set plugin options.

Plugin Implementation Alternatives

Existing plugin implementations include PluginBase and Stevedore.

Stevedore is an OpenStack project, and using it would align the project more closely with the community.
Stevedore requires registering plugins via setup.py entry_points. The setup.cfg for OpenStack-Ansible
needs modifications to install the python code, and the lib directory needs to be renamed in order to work
within pbrs design. A prototype review <https://review.openstack.org/#/c/418076/> for these changes
has been submitted.

PluginBase is not directly part of the OpenStack ecosystem, but is simple, standalone plugin system. It
has no external dependencies, and can be used via the standard Python import system without requiring
a setup.py file for our existing code.

The PluginBase method is less impactful for in-tree code, however any external plugins should be pip-
installable anyway, thus having a setup.py. Therefore, either is viable as an implementation option, with
Stevedore requiring slightly more upfront work.

Playbook/Role impact

Ideally, playbook impact should be minimal or non-existent. The inventory generated should look the
same from a playbook perspective, regardless of backend plugins used.

Upgrade impact

A migration path from the existing JSON source should be provided, so that existing environments can
move to new systems, should they choose. However, migrating will likely involve implementation detail
knowledge that differs per system, so each one will likely need to have its own import functionality.

An export function has already been implemented to provide the inventory in a per-host format. This
could be used as a basis for external systems to use in their own import systems.

This export/import process is assumed to be out-of-band from the playbook runs.

Security impact

This change introduces communication to outside systems - there is inherent risk in doing so. These
systems are assumed to be using secure channels and trusted by the deployers.

Secrets could theoretically be stored in these backends, though the openstack-ansible.sh wrapper
script currently references the user_secrets.yml file instead of placing those in the inventory. The
system should not dictate that this is the only solution for secrets, however. Where deployers choose to
put these is up to them, though storing secrets in any sort of unencrypted or unprotected backend is not
advised.

84 Chapter 8. Pike Specifications

http://pluginbase.pocoo.org/
http://docs.openstack.org/developer/stevedore/tutorial/index.html
https://review.openstack.org/#/c/371798/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

Inventory may take longer to generate or look up depending on the system used as a backend. If said
system is used via a network interface, latency and caching are concerns.

Since this category is fairly broad and different systems will have different characteristics, more detail is
best left to specific plugin implementations.

End user impact

Users of the deployed clouds, those consuming virtual machines and networks, should not see much of
a difference. This change is largely to facilitate deployer concerns.

Deployer impact

Deployers may have entirely new inventory backend sources. Configuration options for reading from said
sources would have to be provided. The default, in-tree implementation is likely to remain the JSON file
for the time being.

Changes to existing clusters will require deployer intervention to migrate relevant data from the file into
their new system, which may or may not be managed externally to an OpenStack-Ansible deployment.

Any helper scripts that relied on the openstack_inventory.json file will need to be modified, prefer-
ably to take advantage of the new plugins/APIs.

The inventory-manage.py script currently only provides a management interface for the JSON file,
and is not intended to be a universal inventory management tool. Different systems will have their own
clients or front ends for doing such management and querying.

Developer impact

Developers of roles should be able to rely on the inventory information staying the same.

Developers working on the inventory generation must account for multiple backend sources of data,
however the intention is to provide a uniform API for working with that data.

Dependencies

While not a strict dependency, this is closely related to the dynamic inventory lib blueprint/spec. It
specifically tries to solve the problem of external backends.

8.2.3 Implementation

Assignee(s)

Primary assignee:
nolan-brubaker (IRC: palendae)

Other contributors:
steve-lewis (IRC: stevelle)

8.2. Pluggable Inventory Backends 85

https://blueprints.launchpad.net/openstack-ansible/+spec/dynamic-inventory-lib

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• Implement existing code as a separate module. This work has largely been done, see
code reviews https://review.openstack.org/#/c/392056/, https://review.openstack.org/392417, and
https://review.openstack.org/399303.

• Implement plugin system. Whether this is Stevedore or PluginBase, the code for interfacing with
the system will need to be written.

• Implement the file system code as a plugin. This may be done in tandem with the previous item in
order to fully test it.

8.2.4 Testing

Unit and integration tests should be written to ensure that the existing JSON code continues to work.
Also, sample plugins should be written to exercise the system, even if they are dummy systems.

Since this fits into inventory tests, it should not affect the integrated gate build times. It should also be
tested per-commit.

Testing will also be implicit in the integrated build, but not necessarily targeted for easy troubleshooting.

Individual plugins external to this repo will need to be gated separately.

8.2.5 Documentation impact

Guidance on writing plugins and migrating to new systems should be provided

8.2.6 References

This spec has been informed by discussions on etherpads such as:

• https://etherpad.openstack.org/p/osa-dynamicinventory-plugins

• https://etherpad.openstack.org/p/craton_osa

• https://etherpad.openstack.org/p/openstack-ansible-newton-dynamic-inventory

8.3 Monitoring for an OpenStack-Ansible deployment

date
2017-02-21 00:00

tags
monitoring, operations

Blueprint on Launchpad:

• https://blueprints.launchpad.net/openstack-ansible/+spec/monitorstack

The goal of the efforts described in this spec is to provide an easy method for monitoring an OpenStack
cloud. This would initially include basic service state monitoring with extra functionality added as it
matures.

86 Chapter 8. Pike Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/monitorstack

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.3.1 Problem description

OpenStack clouds are complex systems of hardware, software, and networks. Deployers need to monitor
the health of all of these components to ensure that end users have access to resources. OpenStack-
Ansible does not offer any components for monitoring at this time, and this forces deployers to build
their own monitoring plugins and tool stacks.

Deployers and operators need to know:

• Are my OpenStack services up or down?

• Are my additional services (Galera, RabbitMQ, etc) up or down?

• What is the state of cluster partitions for Galera and RabbitMQ?

• Are my APIs responding within a reasonable time period?

• Are my management and tenant networks accessible?

• Is the hardware underneath my cloud operating normally?

8.3.2 Proposed change

The proposed changes fall into two main buckets:

Monitoring plugins
This is the primary work effort for the spec.

Deployers need a solid set of monitoring plugins that gather information from various services or
entities, and those plugins should output data in common formats for the most popular monitoring
tool stacks.

Monitoring tool stack
This is the secondary work effort for the spec.

There are many open source and commercially available monitoring tool stacks available for Linux.
Deployers should have the option to deploy an opinionated tool stack via Ansible if they dont have
one of their own already. The tool stack should offer up its time series data for searching and also
have an alerting mechanism that can hook into a deployers existing notification tools.

Alternatives

There are loose collections of monitoring plugins available within OpenStack, but those plugins arent
being actively maintained. Many of the other plugin sets available today only output their data in a
specific format. Deployers could choose to use these plugins instead.

Deployers could also deploy their own monitoring tool stacks if needed. They could use the monitoring
plugins created in this spec with their existing tools.

8.3. Monitoring for an OpenStack-Ansible deployment 87

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

The monitoring plugins should be installable via pip and they can be added into existing roles or play-
books (perhaps the openstack-ansible-openstack_hosts role). The plugins themselves should be released
independently of an OpenStack release.

The monitoring tool stack would be implemented in a new role with an additional playbook. The role
that deploys this stack would be versioned along with OpenStack-Ansible releases so that it can utilize
the existing variables and modules from each release.

Upgrade impact

This would be the first implementation of monitoring plugins and tools in OpenStack-Ansible, so there
is no upgrade concern at the moment. However, the plugins and tool stack installation should be written
such that upgrades are reliable.

Security impact

Some monitoring plugins will need some level of privileged access to OpenStack services or the other
services running in the cloud. This requires accounts to be created and new secrets to be stored. It is
possible to use accounts that have fewer privileges so that a compromise of a monitoring plugin would
have a limited security impact.

The monitoring tool stack itself has important security concerns to address. Data from the monitoring
plugins running on each host or container must be able to reach a centralized database for storage and
processing. Access to any web frontends or databases should be handled carefully, just as we do for
Horizon or Galera today.

Performance impact

Some monitoring plugins will need to make requests to OpenStack APIs or access certain other services.
These plugins must be written carefully to avoid negative performance impacts on the system.

End user impact

End users should not notice the changes from this work.

However, they should get a better user experience if the environment is closely monitored and operations
teams have access to valuable performance data.

Deployer impact

The monitoring plugins should be distributed as a pip package, so this should have a small impact on
deployers. Some plugins will need accounts on the system, so deployers will need to create additional
secrets for those accounts.

Deployers would have the option to deploy the monitoring tool stack if they do not have one of their own.

88 Chapter 8. Pike Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

The developer impact from these changes is very low. The monitoring plugins should be easy to use and
heavily tested. Developers should be able to modify existing plugins and create new ones with ease.

Dependencies

There are no dependencies.

8.3.3 Implementation

Assignee(s)

Primary assignee:
Major Hayden (mhayden)

Other contributors:
Kevin Carter (cloudnull) Antony Messerli (antonym)

Work items

1. Write a small class that can be extended for new monitoring plugins.

2. Begin writing monitoring plugins that are executable via setuptools entry points.

3. Ensure that tests are available for each plugin as well as the base class.

4. Create a role to deploy a monitoring tool stack that uses these plugins.

5. Document the plugins and the tool stack.

8.3.4 Testing

The monitoring plugins should be tested on each commit using tox.

The monitoring tool stack role should be tested independently (like the other IRR repos) and added to
the integrated build as an optional component.

8.3.5 Documentation impact

The plugins should be documented and there should be developer guides that explain how to modify
existing plugins or add new ones. The monitoring tool stack role will need documentation that explains
the new variables and functionality available.

8.3. Monitoring for an OpenStack-Ansible deployment 89

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.3.6 References

Notes from the OpenStack PTG in Atlanta (Feb 2017):

• https://etherpad.openstack.org/p/osa-ptg-pike-monitoring

8.4 Integration of OpenDaylight SDN controller with Neutron

date
2017-06-08 11:00

tags
opendaylight, neutron, SDN, openvswitch

Blueprint on Launchpad:

• https://blueprints.launchpad.net/openstack-ansible/+spec/opendaylight

This spec introduces the work required to have the OpenDaylight (ODL) SDN controller deployed as a
Neutron backend, using networking-odl ML2 mechanism driver to connect to Neutron.

This spec also covers the connection of OpenvSwitch (OvS) to OpenDaylight.

8.4.1 Problem description

OpenStack networking (Neutron) uses a modular approach that allows different backends to be used,
by means of mechanism drivers. Although Neutron can handle simple deployments, more advanced
networking capabilities are better addressed with an advanced SDN controller, such as OpenDaylight.

8.4.2 Proposed change

The proposed change consists on using the existing OpenDaylight Ansible role and optionally deploying
it along with Neutron. The connection of OpenDaylight and Neutron is done by using the networking-odl
ML2 mechanism driver, and configuring Neutron to use it.

After OpenDaylight and networking-odl are installed, some configuration is required in ml2.ini file to
instruct Neutron to use the mechanism driver, as well as setup OpenDaylights endpoint and credentials.

Final step consists on connecting the traffic forwarding elements with the OpenDaylight controller. This
spec will use OpenvSwitch for this task. Also, neutron-openvswitch-agent needs to be stopped and dis-
abled, as OpenDaylight is the responsible for data plane management.

Alternatives

There are other networking backend for Neutron already available with Openstack-Ansible, namely Cal-
ico (https://www.projectcalico.org/tag/openstack/) and DragonFlow (https://wiki.openstack.org/wiki/
Dragonflow). These backends are optionally deployed depending on the ML2 configuration that is passed
to os_neutron Ansible role.

90 Chapter 8. Pike Specifications

https://etherpad.openstack.org/p/osa-ptg-pike-monitoring
https://blueprints.launchpad.net/openstack-ansible/+spec/opendaylight
https://www.projectcalico.org/tag/openstack/
https://wiki.openstack.org/wiki/Dragonflow
https://wiki.openstack.org/wiki/Dragonflow

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

The os_neutron role will be modified to optionally deploy OpenDaylight. The proposal is to
use the same approach as DragonFlow: when the neutron_plugin_type variable is set to ml2.
opendaylight, OpenDaylight would be used as Neutron backend. There will be a new taskfile,
neutron_opendaylight_setup.yml, which would be included in os_neutrons playbook when the
above condition is fulfilled.

The OpenvSwitch scenario would be leveraged to work with OpenDaylight, being OvS the only switch
supported in the first release.

Upgrade impact

This is the first implementation of OpenDaylight with Openstack-Ansible, so no upgrade concerns yet.

Security impact

Networking-odl configuration requires the setup of a username and password for northbound auhentica-
tion towards OpenDaylight. The deployer should be able to configure those credentials.

Communication between the controller and the switches will not be secured by default. Using TLS to
secure the communications is considered a stretch goal, and deployers need to consider this security
implication, specially in production environments. For more information on secure communications
between OpenDaylight and OpenvSwitch, see the References.

Performance impact

For those choosing to opt-in this deployment method, some extra packages need to be installed on the
system, which would make installation last a bit longer.

Extra resources are needed to run the OpenDaylight SDN controller on the system as well. However,
performance in Neutron API calls should be minimum.

End user impact

End users would have a new networking API available through OpenDaylight. This would enable them
to create advanced networking scenarios (e.g. Service Function Chaining). This will require some docu-
mentation with troubleshooting steps to verify that OpenDaylight is working properly, as well as pointers
to OpenDaylights official documentation.

No changes to Horizon or other OpenStack components are expected.

8.4. Integration of OpenDaylight SDN controller with Neutron 91

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

New artifacts are being deployed, namely the Karaf runtime for OpenDaylight, and the networking-odl
pip package. OpenDaylight requires around 2.5G of RAM to work properly, with OpenStack, that would
need to be considered when dimensioning the host where it will run.

Also deployers need to ensure that OpenvSwitch is deployed in all networking nodes, namely compute
hosts and hosts where neutron agents are running.

Developer impact

Developer impact is very low, all tasks for OpenDaylight deployment will be optional and can be ignored
when extending or modifying Neutron role.

Dependencies

There are no dependencies

8.4.3 Implementation

Assignee(s)

Primary assignee:
Juan Vidal (jvidal)

Other contributors:
Fatih Degirmenci (fdegir) Daniel Farrell (dfarrell07)

Work items

1. Install OpenDaylight SDN controller

2. Configure Neutron to use OpenDaylight

3. Deploy and configure OpenvSwitch to work with OpenDaylight

4. Set OpenDaylight as OpenvSwitch manager

5. Create a new test and verify that it passes

6. Document the new scenario

8.4.4 Testing

As a replacement of Neutron backend, this new scenario should provide the same capabilities of existing
backends, so existing tests should be run.

A test specific for OpenDaylight can also be implemented, in the same way as there are currently tests
for Calico or DragonFlow.

92 Chapter 8. Pike Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.4.5 Documentation impact

The new scenario OpenDaylight+OpenvSwitch should be documented, explaining the configuration pa-
rameters required to deploy it.

8.4.6 References

Deploying OpenDaylight using Ansible:

• https://wiki.opendaylight.org/view/Deployment#Ansible_Role

Ansible role for OpenDaylight:

• https://git.opendaylight.org/gerrit/p/integration/packaging/ansible-opendaylight.git

Setting up OpenDaylight on OpenStack:

• https://wiki.opendaylight.org/view/OpenStack_and_OpenDaylight

Networking-odl mechanism driver:

• https://github.com/openstack/networking-odl

Networking-odl installation and configuration:

• https://docs.openstack.org/developer/networking-odl/installation.html

OpenvSwitch scenario with Openstack-Ansible:

• https://docs.openstack.org/developer/openstack-ansible-os_neutron/app-openvswitch.html

TLS Support on OpenDaylight OpenFlow plugin:

• https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support

Secure Communication Between OpenFlow Switches and Controllers

• https://www.thinkmind.org/download.php?articleid=afin_2015_2_30_40047

8.5 Openvswitch with NSH support in Neutron

date
2017-06-21 15:00

tags
Openvswitch,neutron,SFC,NSH

Blueprint on Launchpad

• https://blueprints.launchpad.net/openstack-ansible/+spec/openvswitch-with-nsh-support

This spec introduces the work required to have Open vSwitch with NSH protocol support which is used
in Service Function Chaining.

8.5. Openvswitch with NSH support in Neutron 93

https://wiki.opendaylight.org/view/Deployment#Ansible_Role
https://git.opendaylight.org/gerrit/p/integration/packaging/ansible-opendaylight.git
https://wiki.opendaylight.org/view/OpenStack_and_OpenDaylight
https://github.com/openstack/networking-odl
https://docs.openstack.org/developer/networking-odl/installation.html
https://docs.openstack.org/developer/openstack-ansible-os_neutron/app-openvswitch.html
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support
https://www.thinkmind.org/download.php?articleid=afin_2015_2_30_40047
https://blueprints.launchpad.net/openstack-ansible/+spec/openvswitch-with-nsh-support

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.5.1 Problem description

According to * https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/ Network Service Header (NSH) is in-
serted to a packet or a frame to realize service functions paths. Also provides a mechanism for metadata
exchange along the instantiated service path. The NSH protocol is used as an SFC encapsulation which is
required for the support of the Service Function Chaining (SFC) Architecture as it defined in RFC7665.

The Openvswitch currently doesnt support the NSH protocol. So the only way to add NSH support to
Open vSwitch is through Yi Yangs patches (https://github.com/yyang13/ovs_nsh_patches).

8.5.2 Proposed change

The proposed change is the use of the existing Neutron Ansible Role for the installation of Open vSwitch
with NSH support when the user selects that functionality through specific configuration in Openstack-
Ansible project. We intent to configure only Neutron component and not use the aforementioned func-
tionality for end to end testing.

The installation of Open vSwitch with NSH support will be addressed by the use of specific packages
which are going to be maintained in private repositories unti the NSH functionality will be included in a
subsequent release of Open vSwitch project.

8.5.3 Alternatives

An alternative to create a SFC without NSH is the port chaining technique. The aforementioned technique
uses Neutron ports to steer the traffic to a service chain and has no notion of the actual services which
are attached to those Neutron ports.

Playbook/Role impact

The os_neutron role will be modified to optionally install Open vSwitch with NSH support. The proposal
is to add an extra variable so the user can decide whether or not he needs to add NSH support with
the Open vSwitch installation. When the neutron_plugin_type variable is set to ml2.ovs or ml2.
dragonflow and the ovs_nsh_support variable is set to true then the Open vSwitch will be installed
with NSH support. So there will be an extra task in the neutron_pre_install.yml which will add
the distribution specific repositories with the ovs_nsh packages.

Upgrade impact

This is the first implementation of Open vSwitch with NSH support in OpenStack-Ansible,so no upgrade
concerns yet.

94 Chapter 8. Pike Specifications

https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/
https://github.com/yyang13/ovs_nsh_patches

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

No security impact

Performance impact

The added NSH support to Open vSwitch will not have any performance impact to the current OpenStack-
Ansible installation because the system will need to install only some extra packages.

End user impact

The end users will have the capability to create service function chains with the use of the NSH proto-
col. Also they can use OpenDaylight as networking backend which via the sfc component supports the
creation of SFCs through the NSH protocol.

Deployer impact

The deployer needs to ensure that the specific repositories which hold the ovs_nsh packages are added to
the system and the proper Open vSwitch packages are installed.

Developer impact

The developer impact is really low because the NSH support for Open vSwitch is optional and can be
ignored when extending or modifying Neutron role.

Dependencies

There are no dependencies

8.5.4 Implementation

Assignee(s)

Primary assignee:
Dimitrios Markou (mardim)

Work items

1. Add specific PPA for ovs_nsh packages

2. Install Open vSwitch with NSH protocol suppport

3. Document the new functionality

8.5. Openvswitch with NSH support in Neutron 95

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.5.5 Testing

Existing tests should be run because the only thing that change is that the installation of Open vSwitch
is managed by specific repositories when NSH support is selected.

8.5.6 Documentation impact

The new functionality Open vSwitch with NSH support should be documented, explaining the required
configuration parameters which are necessary for this deployment.

8.5.7 References

Open vSwitch scenario with OpenStack-Ansible

• https://docs.openstack.org/openstack-ansible-os_neutron/latest/app-openvswitch.html

NSH ietf draft

• https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/

SFC RFC 7665

• https://tools.ietf.org/html/rfc7665

PPA for Openvswitch-NSH packages

• https://launchpad.net/~mardim/+archive/ubuntu/mardim-ppa

Openvswitch-NSH packages for Centos

• https://copr.fedorainfracloud.org/coprs/mardim/openvswitch-nsh/

8.6 Replace IP Generation Code

date
2017-1-11 22:00

tags
inventory, ip, networking

The current inventory code uses a simple set to manage assigned IPs (USED_IPS) and complex queues
to pull from the available subnets.

This code can be simplified and made more modular.

Launchpad blueprint:

• https://blueprints.launchpad.net/openstack-ansible/+spec/replace-ip-generation

The current IP generation code is tightly couple to the configuration loading, writing, and inventory
manipulation code. To help provide better, more focused test coverage, this code can be updated and
replaced.

96 Chapter 8. Pike Specifications

https://docs.openstack.org/openstack-ansible-os_neutron/latest/app-openvswitch.html
https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/
https://tools.ietf.org/html/rfc7665
https://launchpad.net/~mardim/+archive/ubuntu/mardim-ppa
https://copr.fedorainfracloud.org/coprs/mardim/openvswitch-nsh/
https://blueprints.launchpad.net/openstack-ansible/+spec/replace-ip-generation

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8.6.1 Problem description

The current IP generation code is difficult to maintain, despite mostly being moved into a separate ip.
py module. The code uses the external Queue class, which is slightly more complex than necessary.
The USED_IPS set and the pools of available IPs are not managed together, and could easily become
out-of-sync.

New code has been written to add an IPManager class, but it is not currently integrated into any other
code. Such integration is a somewhat large task, and would be error-prone to do in a single review. This
spec is intended to serve as a road map to guide small, focused changes towards using it.

Note that while the IPManager includes an API for external IPAM systems, this spec is only focused on
using this class within the code, not on any sort of plugin system.

8.6.2 Proposed change

An initial draft of new IP management code has been written in the IPManager class.

After that, the existing get_ip_address, and set_used_ips were refactored to still use the existing
data structures, but in a way that would allow usage of the new IPManager class. See review 403915.

Some refactors may be necessary for the IPManager class to facilitate this and further codify assumptions.

Alternatives

The code be left as is, with the assumption that it will be replaced wholesale by some other system in the
near future. That replacement might happen via plugins or a new inventory codebase. This has not been
deeply explored in the context of the IP management/generation.

One such replacement system, for example, could be using LXD to entirely manage container creation,
which is where IP generation is primarily used.

Playbook/Role impact

No noticeable impact on the playbooks and roles should be seen; this is largely facilitating code mainte-
nance and should produce the same output.

Upgrade impact

There should be no upgrade impact - the IPManager class should be loaded with the already-generated
IP addresses in upgraded installations.

8.6. Replace IP Generation Code 97

https://review.openstack.org/#/c/392277/
https://review.openstack.org/#/c/397299/
https://review.openstack.org/#/c/397299/
https://review.openstack.org/#/c/403915/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

This change should not affect any sensitive data. It is unrelated to secret storage.

Performance impact

Generating IPs may be slightly faster, since this approach doesnt rely on delayed access from Queue
objects. However, the overall runtime of the inventory is negligible in the overall speed of the system and
hasnt been profiled.

End user impact

This change would be invisible to users of the deployed cloud.

Deployer impact

No configuration or output changes should be introduced. The current configurations should be used
as-is.

Developer impact

This should improve quality of life for developers debugging the IP generation behavior.

Dependencies

This has no direct dependencies on other blueprints or specs.

8.6.3 Implementation

Assignee(s)

Primary assignee:
nolan-brubaker, IRC: palendae

Other contributors:
steve-lewis, IRC: stevelle

Please add IRC nicknames where applicable.

98 Chapter 8. Pike Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• Refactor current IP loading/management functions to be amenable to replacing the data structures.

• Replace the data structures and update the objects being passed between functions.

8.6.4 Testing

Unit and integration tests should be added for all code changes to confirm there are no regressions.

8.6.5 Documentation impact

Developer documentation should be updated to reflect the new mechanism used, preferably included with
implementation patches.

8.6.6 References

N/A

8.6. Replace IP Generation Code 99

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

100 Chapter 8. Pike Specifications

CHAPTER

NINE

OCATA SPECIFICATIONS

9.1 Create Operations Guide

date
2016-12-19 17:00

tags
docs, ops

Blueprint: Create OpenStack-Ansible Operations Guide * https://blueprints.launchpad.net/
openstack-ansible/+spec/create-ops-guide

This specification proposes the development of an OpenStack-Ansible Operations Guide for the Ocata
release.

9.1.1 Problem description

During the Newton development cycle, the Installation Guide was revised which focused on providing
a method for installing OpenStack for a test environment and production environment. As noted in the
Installation Guide spec, the operations content did not belong in the Installation Guide as it reduced the
users focus to install OpenStack, and was temporarily relocated to the following Developer Documenta-
tion pages:

• http://docs.openstack.org/developer/openstack-ansible/developer-docs/ops.html

• http://docs.openstack.org/developer/openstack-ansible/developer-docs/extending.html

There is a need to develop a standalone Openstack-Ansible operations guide that will address an operators
need for information on managing and configuring an OpenStack cloud using OpenStack-Ansible.

9.1.2 Proposed change

The main focus of the operations guide is to re-organise the current content and develop new content so an
OpenStack operator can easily search for information on maintaining their environment, troubleshooting,
and resolving issues.

The proposed changes are:

• A new ToC with input from developers and operations: https://review.openstack.org/#/c/409854/

• Removal of duplicated content from the OpenStack manuals operations guide (so that this guide
focuses primarily upon OpenStack-Ansible operations).

101

https://blueprints.launchpad.net/openstack-ansible/+spec/create-ops-guide
https://blueprints.launchpad.net/openstack-ansible/+spec/create-ops-guide
https://review.openstack.org/#/c/323471/12/specs/newton/osa-install-guide-overhaul.rst
http://docs.openstack.org/developer/openstack-ansible/developer-docs/ops.html
http://docs.openstack.org/developer/openstack-ansible/developer-docs/extending.html
https://review.openstack.org/#/c/409854/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Structuring the guide in a runbook format for the following reasons:

1. Ensuring the guide includes lower-level how-tos for anyone starting to operate their own
cloud.

2. Ensuring the guide includes higher-level troubleshooting information for more experienced
operator.

3. It is structured to make it easy for operators to find the information they are looking for.

• Review and update current operations content to follow the openstack-manuals documentation con-
ventions.

Alternatives

• The current operations content and any future content will remain in the Developer Documentation.

Playbook/Role impact

N/A

Upgrade impact

N/A

Security impact

N/A

Performance impact

N/A

End user impact

These changes will improve the end user experience, by providing a more structured and better flow of
information to operate your OpenStack cloud.

Deployer impact

N/A

102 Chapter 9. Ocata Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

N/A

Dependencies

N/A

9.1.3 Implementation

Assignee(s)

Primary assignee:
Alexandra Settle (asettle)

Other contributors:
Andy McCrae (andymccr), OpenStack-Ansible PTL Darren Chan (darrenc) Robb Romans (rro-
mans)

Work items

• Clarify and obtain consensus on the content structure

• Gather information from SMEs as needed

• Create a draft directory for operations guide changes

• Create a work items list and allocate resources

• Ensure documentation meets openstack-manuals writing conventions

• Test draft documentation before publication

9.1.4 Testing

The testing will be conducted by the community once a draft is available. OpenStack-Ansible users will
be asked to utilise the new operations guide to perform the OpenStack operations and evaluate if the
information provided is accurate, clear, and concise.

9.1.5 Documentation impact

This is a documentation change, N/A.

9.1. Create Operations Guide 103

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

9.1.6 References

• ToC planning

– https://docs.google.com/document/d/1xeJ_lep7P2e7HLbRFG57Dx4W9s8brkuNIqJmOvheWKI/
edit?usp=sharing

– https://review.openstack.org/#/c/409854/

9.2 Octavia

date
2016-11-01 00:00:00

tags
lbaas, octavia, load balancer, neutron

Blueprint: Deploy Octavia (LBaaS) with OpenStack-Ansible
Link: https://blueprints.launchpad.net/openstack-ansible/+spec/octavia

The Octavia project deploys load balancers that are more scalable and resilient than the original neutron-
lbaas agent-based load balancers. Octavia has a few daemons that handle the build- out, configuration,
and tear-down of load balancers.

9.2.1 Problem description

There are two main load balancer offerings in OpenStack right now:

• LBaaSv2 w/agent: Uses the neutron-lbaasv2 agent with haproxy running in a namespace

• LBaaSv2 w/Octavia: Deploys load balancers into virtual machines and manages them using the
LBaaSv2 API

Agent-based load balancers have scalability and reliability limitations since the haproxy instances only
run in one place without failover.

Octavia offers some helpful improvements for load balancing:

• Load balancers are deployed into virtual machines, which allows them to be sized appropriately
and segregates them from the control plane.

• Putting load balancers into the virtual machines brings them closer to the resources that they are
balancing. This increases load balancer performance, especially in clouds where the control plane
is deployed on weaker hardware than the data plane (hypervisors).

• Octavia can deploy load balancers in a highly available configuration (currently active/passive)
which helps with failures as well as patching/updates.

104 Chapter 9. Ocata Specifications

https://docs.google.com/document/d/1xeJ_lep7P2e7HLbRFG57Dx4W9s8brkuNIqJmOvheWKI/edit?usp=sharing
https://docs.google.com/document/d/1xeJ_lep7P2e7HLbRFG57Dx4W9s8brkuNIqJmOvheWKI/edit?usp=sharing
https://review.openstack.org/#/c/409854/
https://blueprints.launchpad.net/openstack-ansible/+spec/octavia
https://wiki.openstack.org/wiki/Octavia

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

9.2.2 Proposed change

The proposed changes would include:

• Create a role for Octavia (possibly openstack-ansible-os_octavia‘)

• Add Ansible code to deploy Octavia within an OpenStack-Ansible environment

• Add centralized tests for the Ansible role

• Add documentation to the role itself

• Integrate the role with OpenStack-Ansible without dislodging the existing neutron-lbaasv2 + agent
support

• Allow deployers to choose LBaaSv2+agent or LBaaSv2+Octavia

• Add documentation to OpenStack-Ansibles main docs to explain how to deploy Octavia as part of
the integrated build

Optionally, work could be done to enable SSL offloading support, which requires a deployment of Bar-
bican.

Alternatives

We could keep using LBaaSv2 with the agent architecture until that code is deprecated. This is not ideal.

Playbook/Role impact

Playbooks will need to be added to OpenStack-Ansible to deploy Octavia, but this would be very similar
to the existing work done for other services, like Neutron.

Upgrade impact

Octavia hasnt been deployed previously, so theres nothing to upgrade here. However, deployers who
are currently using LBaaSv2+agent will have the option of changing the backend LBaaSv2 driver to use
Octavia instead. They will need to delete all existing load balancers prior to making this change and
recreate them.

Security impact

The main security concern is that the Octavia load balancer virtual machines will need to be on some type
of management network that can be reached by Octavia services that are running within the control plane.
Those virtual machines will have one network connection into a tenant network and one connection into
a management network.

This could allow an attacker to move from a compromised load balancer VM into the control plane. We
will need to determine some ways to mitigate those types of attacks. This could be done with iptables or
other network filtering.

9.2. Octavia 105

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

Load balancing performance should be better with Octavia-based load balancers. However, we will need
to generate or download a VM image for the load balancer virtual machines. This could take time and it
will need to be optimized.

End user impact

End users that already use the LBaaSv2 API wont notice a change. The API contract and endpoints
remain the same. Only the backend LBaaSv2 driver will be changed.

Deployer impact

Deployers will need to enable Octavia deployments if they choose to use them. Octavia will not be
deployed by default. Deployers will also need to do their capacity planning a little differently since load
balancer virtual machines will take up space within the data plane that would normally be occupied by
tenant virtual machines.

Developer impact

The new Octavia role will follow the same deployment/testing patterns as other roles. It should be just
as approachable as other OpenStack-Ansible independent roles.

Dependencies

The work for the Octavia role has no dependencies that are unsatisfied.

9.2.3 Implementation

Assignee(s)

Primary assignee:
Major Hayden (IRC: mhayden)

Work items

See the Proposed change section above for an itemized list.

106 Chapter 9. Ocata Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

9.2.4 Testing

The Octavia role should use the standard centralized testing repository as other roles. Octavia will need
keystone, nova, neutron, glance deployed for proper testing.

Barbican will be required for SSL offloading if that feature is enabled.

9.2.5 Documentation impact

Documentation will be needed for the role itself, as well as in the integrated repository. This documen-
tation should match up with the docs written for other services, like neutron or nova.

9.2.6 References

Octavia wiki: https://wiki.openstack.org/wiki/Octavia Octavia roadmap: https://wiki.openstack.org/
wiki/Octavia/Roadmap

9.2. Octavia 107

https://wiki.openstack.org/wiki/Octavia
https://wiki.openstack.org/wiki/Octavia/Roadmap
https://wiki.openstack.org/wiki/Octavia/Roadmap

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

108 Chapter 9. Ocata Specifications

CHAPTER

TEN

NEWTON SPECIFICATIONS

10.1 Add support for SystemD

date
2015-07-14

tags
systemd

The purpose of this spec is to adjust our current upstart only init process to allow us to leverage SystemD.
While SystemD is not present within the Ubuntu 14.04 LTS OS that we use today it is something that is
coming within the next LTS release and something that we should begin implementing as an alternative
to upstart.

https://blueprints.launchpad.net/openstack-ansible/+spec/add-support-for-systemd

10.1.1 Problem description

OSAD presently only support Ubuntu 14.04 LTS using upstart. In the next LTS upstart will no longer be
an option. For this reason I believe its time to begin implementing SystemD support within the OpenStack
roles.

10.1.2 Proposed change

The basic change is more of a structural one. Essentially adding SystemD support will be a new template
and will follow much of the same pattern found within our current upstart process.

Alternatives

n/a - SystemD is coming and the sooner we have an oppinion on it the better off we will be.

109

https://blueprints.launchpad.net/openstack-ansible/+spec/add-support-for-systemd

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook impact

The playbooks will not be impacted however the roles will have a new SystemD template and set of tasks
that will enable the ability for the system to use SystemD.

Upgrade impact

Adding in SystemD support will ensure that deployers are able to upgrade to future OSs that only have
SystemD available.

Security impact

n/a

Performance impact

n/a

End user impact

n/a

Deployer impact

n/a

Developer impact

n/a

Dependencies

n/a

10.1.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter cloudnull

110 Chapter 10. Newton Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• Add SystemD templates to all OpenStack roles.

• Add SystemD tasks to all OpenStack roles.

10.1.4 Testing

Being that we do not gate on anything that uses SystemD at the moment this will be a set of changes that
are being implemented to future proof OSAD. This change will also allow us to being looking into other
OS support which will likely carry with it an implementation of SystemD, such as Debian Jessie.

10.1.5 Documentation impact

n/a

10.1.6 References

n/a

10.2 Gate Split

date
2015-09-07 12:00

tags
gate, mitaka

The current integration gate check relies on an All-In-One (AIO) build which is running low on resources
and does not adequately test all code paths that matter for the primary use-cases of the project.

This spec outlines a proposal to switch to using multiple gate checks which are focused on testing multiple
code paths that better reflect the primary use-cases.

• https://blueprints.launchpad.net/openstack-ansible/+spec/gate-split

10.2.1 Problem description

The current AIO gate check:

1. Is severely limited by the resources available in OpenStack-CIs 8 vCPU, 8GB RAM per instance.
While this is adequate for basic developer testing it is not a suitable reflection of the way deploy-
ments are done for production.

2. OpenStack-CI currently only provides for single- and two-node gate checks and have specifically
asked that single-node checks be used as far as possible before implementing two-node checks.

3. Does not provide adequate code path coverage. It does not test the Ceph client configuration for
Glance/Cinder, the NFS client configuration for Glance/Cinder, a standalone Swift deployment, or
a deployment without Swift.

10.2. Gate Split 111

https://blueprints.launchpad.net/openstack-ansible/+spec/gate-split

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

4. Tries to test as much as possible in one monolithic test, making the check difficult to understand,
to maintain and to diagnose faults for.

5. Fails far too often. Reducing the container affinity as tested in https://review.openstack.org/221957
has identified that the resource constraints are most likely the primary reason for the regular tempest
test failures in the HP Cloud provider of OpenStack-CI..

10.2.2 Proposed change

Implement individual gate checks for OpenStack covering the following use-cases using an AIO:

1. Compute with an NFS-backed Image and Block Storage service. This is a very commonly deployed
design for environments with existing storage hardware investments. This AIO would be built
with the following characteristics: - An NFS service on the host - Compute service on the host
- HAproxy service on the host - Cinder built in a container, configured to use the NFS service
- Glance built in a container, configured to use the NFS service - Single affinity for Keystone,
Horizon, Galera, Repo, RabbitMQ containers - Ceilometer and Neutron deployed as in the AIO
currently

2. Compute with a Ceph-backed Image and Block Storage service. This design is becoming more
and more popular for deployments. This AIO would be built with the following characteristics:
- Compute service on the host - HAProxy service on the host - An simple Ceph cluster running
in three containers - Cinder built in a container, configured to use the Ceph service - Glance built
in a container, configured to use the Ceph service - Single affinity for Keystone, Horizon, Galera,
Repo, RabbitMQ containers - Ceilometer and Neutron deployed as in the AIO currently

3. Object Storage with Keystone. This is a typical Standalone Swift design. For the sake of using the
common infrastructure, we can add Glance to this for the purpose of verifying that Glance with a
Swift back-end is still working correctly. This AIO would be built with the following character-
istics: - HAProxy service on the host - Swift Account, Container and Object Storage on the host
- Glance built in a container, configured to use Swift as a back-end - Single affinity for Keystone,
Galera, Repo, RabbitMQ containers - Ceilometer deployed as in the AIO currently

4. Keystone Only. This is a specific gate test to verify the code paths for a cluster of three Keystone
servers. This AIO would be built with the following characteristics: - HAProxy service on the host
- 3 Keystone containers - Single affinity for Galera, Repo, RabbitMQ containers

5. Keystone with LDAP. This is a specific gate test to verify the code path for Keystone with an LDAP
back-end. This AIO will be built with the following characteristics: - HAProxy service on the host
- OpenLDAP on the host - 3 Keystone containers - Single affinity for Galera, Repo, RabbitMQ
containers

6. Keystone with SSL. This is a specific gate test to verify the code path for Keystone with SSL
enabled. This AIO will be built with the following characteristics: - HAProxy service on the host -
3 Keystone containers, with SSL enabled on Keystones Apache - Single affinity for Galera, Repo,
RabbitMQ containers

7. A high availability RabbitMQ cluster. This is to test both the deployment and the availability of
the cluster when its taken through a series of known failure scenarios. The details of the tests
themselves would need to be clearly defined and implemented over time, so the gate check would
start with what we have today - a simple test that the deployment works. The AIO would be built
with the following characteristics: - Three RabbitMQ containers - A utility container for executing
tests from

112 Chapter 10. Newton Specifications

https://review.openstack.org/221957

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

8. A high availability Galera cluster. This is to test both the deployment and the availability of the
cluster when its taken through a series of known failure scenarios. The details of the tests them-
selves would need to be clearly defined and implemented over time, so the gate check would start
with what we have today - a simple test that the deployment works. The AIO would be built with
the following characteristics: - HAproxy service on the host - Three Galera containers - A utility
container for executing tests from

9. Repo Only. This is a specific gate test to verify the code paths for a cluster of three Repo servers
and to take it through a series of known failure scenarios. The details of the tests themselves
would need to be clearly defined and implemented over time, so the gate check would start with
what we have today - a simple test that the deployment works. This AIO would be built with the
following characteristics: - HAProxy service on the host - 3 Repo containers - A utility container
for executing tests from

Each use-case gate check must have reference documentation covering the design, the configuration im-
plemented and the tests that are executed against it.

Also switch from our current lint check which combines Ansible syntax and lint checks with python pep8
checks into the following checks which, where possible, make use of the same OpenStack-CI jobs as are
used by other projects:

1. bashate lint checks for bash scripts

2. pep8 lint checks for python scripts

3. Ansible syntax and lint checks for Ansible playbooks and roles

Alternatives

Leave the current gate checks as they are.

Playbook/Role impact

There will be no changes to the playbooks or roles as part of this work.

Upgrade impact

n/a

Security impact

n/a

10.2. Gate Split 113

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

n/a

End user impact

n/a

Deployer impact

n/a

Developer impact

1. More code paths will be tested.

Dependencies

In order to implement variable load balancing configuration, this work depends on: https://blueprints.
launchpad.net/openstack-ansible/+spec/role-haproxy-v2

10.2.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~jesse-pretorius odyssey4me

Other contributors:
https://launchpad.net/~hughsaunders hughsaunders

Work items

For each use-case:

1. Develop and document the design.

2. Implement a non-voting experimental gate check.

3. Push the code and documentation up for review and use check experimental to validate its func-
tionality.

4. Switch the gate check to the normal check queue, leaving it as non-voting, in order to do final
functional validation.

5. Switch the gate check to voting and add it to the merge queue.

114 Chapter 10. Newton Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/role-haproxy-v2
https://blueprints.launchpad.net/openstack-ansible/+spec/role-haproxy-v2
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~hughsaunders

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.2.4 Testing

Please see Work items.

10.2.5 Documentation impact

As indicated in the proposed change, each gate check should be properly documented for easier reference
and understanding.

10.2.6 References

None.

10.3 IPv6 Project Support

date
2015-09-09 22:00

tags
ipv6

ospenstack-ansible should support IPv6 for project networks. To that effect we should make sure that the
necessary components and configurations are installed so that openstack can expose and route IPv6 for
project networks.

10.3.1 Problem description

Neutron currently (in kilo) has the ability to manage and route IPv6 data. OpenStack Ansible currently
has a few holes in IPv6 support on Neutron tenant networks (not installing the radvd package in the
neutron-agents container for instance).

10.3.2 Proposed change

Add a test case for proving IPv6 access on project networks works as expected

Alternatives

Dont explicitly support IPv6

10.3. IPv6 Project Support 115

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook impact

As the primary change is adding a test case this is somewhat open ended. As the support for IPv6 via
Neutron is already mostly there this should be low impact, will likely only be adding the missing package
and test support.

Upgrade impact

None

Security impact

Low, at the moment the only known change is to ensure that radvd is installed so that Neutron can con-
figure/control it.

Performance impact

None

End user impact

The end user will be able to configure IPv6 in the project networks.

Deployer impact

None

Developer impact

None once spec is implemented.

Dependencies

None

10.3.3 Implementation

Assignee(s)

Primary assignee:
prometheanfire

116 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• add test support for IPv6 in OpenStack Ansible

– This would be via configuring a RFC4193 network and connecting from the neutron radvd
namespace to the instance.

– It would also test unicast routing between neutron networks using RFC4193.

• ensure that tests pass

10.3.4 Testing

Ensure that the instance gets an IP in a certian address space and can ping the gateway.

Test for routability, ping between instances on two neutron network segments.

10.3.5 Documentation impact

Should be minimal

10.3.6 References

https://bugs.launchpad.net/openstack-ansible/+bug/1492080

10.4 Monasca High Availability & Monasca-Agent Role

date
2015-10-07 17:00

tags
Ansible, Monasca, Monasca-agent, High Availability, Clustering

Currently, the Monasca role for Openstack-Ansible does not configure any of the services in HA. Instal-
lation of the monasca-agent into hosts and containers is also not handled.

https://blueprints.launchpad.net/openstack-ansible/+spec/monasca-ha

https://blueprints.launchpad.net/openstack-ansible/+spec/monasca-agent

10.4.1 Problem description

Most modern monitoring systems have the ability to cluster its database for resiliency and present the user
interface in a highly available fashion. The Monasca role as currently defined only launches single hosts
with the supporting services configured as single hosts. If you wanted to put the monasca-api behind a
VIP, you would have three different apis with disparate information.

There is currently no monasca-agent Openstack-Ansible role defined. To get monasca-agent on a
Openstack-Ansible installation, you have to manually install it, or use the ansible-monasca-agent play-
book to install it into hosts and containers after the fact.

10.4. Monasca High Availability & Monasca-Agent Role 117

https://bugs.launchpad.net/openstack-ansible/+bug/1492080
https://blueprints.launchpad.net/openstack-ansible/+spec/monasca-ha
https://blueprints.launchpad.net/openstack-ansible/+spec/monasca-agent

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.4.2 Proposed change

Notable changes:

• Monasca-api & friends

• The following services must be placed under a VIP

• Monasca-api

• Influxdb

• MySQL

• The following services must have clustering configured:

• MySQL

• Influxdb

• Storm Nimbus & Supervisor

• Storm Nimbus & Supervisor

• Zookeeper

• Grafana & Monasca-ui

– Not clustered, but for HA to work correctly on Grafana, session sharing and
configuration database connection must be set to the Openstack-Ansible Galera
cluster

• Add python-monascaclient to the utility containers

• Monasca-agent

• The os_monasca-agent role must be developed to install the agent onto all hosts during the
pre-install

• Improvements must be made to monasca-agent to correctly identify all services

Alternatives

Only alternative is using another monitoring system if you plan on using Openstack-Ansible, or living
with the eventual doom of your monitoring data.

Playbook/Role impact

If the user does not include the os_monasca role, there will be no impact other than the inclusion of
the python-monascaclient into the utility containers. If included, the user will likely have to add a few
configuration options, like VIP ranges, replication factors, things that related solely to monitoring and
data resiliency.

118 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade impact

Monasca & friends work independently from Openstack-Ansible so no impact to the openstack upgrade
process is expected.

If the containers are trashed during the upgrade, monasca-agent will have to be re-installed. If not,
monasca-reconfigure script will have to be ran to discover changes to hosts/containers.

Security impact

• Does this change touch sensitive data such as tokens, keys, or user data?

– Only sensitive item the playbook would need would be the admin password to enroll the
monasca users & endpoints.

• Does this change alter a deployed OpenStack API in a way that may impact security, such as a new
way to access sensitive information or a new way to login?

– Monasca uses its own API and only consumes from the keystone API.

• Does this change involve cryptography or hashing?

– No

• Does this change require the use of sudo or any elevated privileges?

– Yes but only on the dedicated Monasca hosts to install & configure services. Monasca-agent
install does not require escalation.

• Does this change involve using or parsing user-provided data? This could be directly at the API
level or indirectly such as changes to a cache layer.

– Only Monasca specific variables will be provided by users.

Performance impact

Monasca runs on its own dedicated hosts.

The impact of the monasca-agent on hosts & containers is minimal.

End user impact

Addition of monitoring as a service. No changes to existing user exposed services.

Deployer impact

• What config options are being added? Should they be more generic than proposed? Are the default
values ones which will work well in real deployments?

• Only configuration options related to Monasca will be added.

• Is this a change that takes immediate effect after its merged, or is it something that has to be
explicitly enabled?

• Monasca must be explicitly enabled.

10.4. Monasca High Availability & Monasca-Agent Role 119

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• If this change is a new binary, how would it be deployed?

• N/A

• Please state anything that those doing continuous deployment, or those upgrading from the previous
release, need to be aware of. Also describe any plans to deprecate configuration values or features.
For example, if we change the name of a play, how do we handle deployments before the change
landed? Do we have a special case in the code? Do we assume that the operator will recreate
containers within the infrastructure of the cloud? Does this effect running instances within the
cloud?

• Does not affect current Openstack Installation without Monasca.

• Monasca specific upgrade instructions will be provided if needed.

Developer impact

Will not affect developers not working with Monasca.

Dependencies

No blueprint dependencies.

10.4.3 Implementation

Assignee(s)

Primary assignee:
rmelero

Work items

Same as Proposed changes.

10.4.4 Testing

The os_monasca role already has testing. I will look at similar roles and determine what best tests to
implement for testing the HA aspect of Monasca.

10.4.5 Documentation impact

Openstack-Ansible documentation will not be affected.

New os_monasca documentation will be written.

120 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.4.6 References

https://github.com/b-com/ansible-monasca

10.5 Multiple CPU Architecture Support

date
2016-06-14 12:00

tags
openstack, ansible, power

The purpose of this spec is to enable OpenStack-Ansible to deploy OpenStack in clouds with multiple
CPU architectures across the nodes to be deployed.

https://blueprints.launchpad.net/openstack-ansible/+spec/multi-arch-support

The purpose of this spec is to add support for multiple CPU architectures to OpenStack-Ansible. With the
introduction of OpenStack services running on other architectures such as PPC64LE, OpenStack-Ansible
needs to be extended to support environments where a mixed environment of CPU architectures exists.

10.5.1 Problem description

OpenStack-Ansible was initially built to support deployments to a single architecture, primarily x86.
With the extension of OpenStack and OpenStack-Ansible support to other platforms such as POWER,
support for deployments running a combination of different CPU architectures is needed.

For each deployment, OpenStack-Ansible creates and builds a repo containing necessary artifacts for the
OpenStack deployment. This repo holds components such as pip wheels, virtualenvs, and source trees
for the different services to be deployed. For each deployment a single master repo is designated where
artifacts are built, then synchronized out to the rest of the slaves.

This creates problems in a multi-architecture deployment for nodes where the repo masters CPU archi-
tecture is different than the architecture of other nodes. For example, deployment of a KVM on POWER
compute node will fail when the artifacts were built on an x86 repo master used for the control plane.

10.5.2 Proposed change

Update OpenStack-Ansible and necessary roles to support building and deploying with multiple CPU
architectures. This includes changes to:

• Look at the Ansible facts for all hosts and determine the set of CPU architectures to build artifacts
for.

• Add support for assigning a build master for each CPU architecture.

• Support building copies of CPU architecture specific artifacts on each build master, which will be
synchronized to all slaves regardless of architecture.

• Support tagging all architecture-specific build artifacts with the corresponding CPU architecture.

• Ensure pre-built binaries used during installation (apt packages, etc) exist or are made available for
the supported CPU architectures (x86, ppc64el) where possible, or documentation added to note
limitations where not available.

10.5. Multiple CPU Architecture Support 121

https://github.com/b-com/ansible-monasca
https://blueprints.launchpad.net/openstack-ansible/+spec/multi-arch-support

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

• Cross-compiling artifacts - This would remove the need for building, tagging and synchronizing
between repos built on different architectures, but so far a reliable way to do this for wheels/venvs
has not been found. This also introduces increased risk of architecture-specific cross-compiling
issues as support for additional architectures is added.

• Support only single-architecture OpenStack-Ansible deployments. This is harmful to deployers
by limiting the potential integration of servers from other architectures into new and existing
OpenStack-Ansible deployments

Playbook/Role impact

There will be impact to the repo playbooks to handle building and synchronizing across multiple archi-
tectures. There will also be minor impact to each role to support building and tagging artifacts with the
required architecture information.

Upgrade impact

N/A

Security impact

N/A

Performance impact

Both repo build and synchronization operations will take longer to complete proportionate to the number
of CPU architectures being deployed.

• Repo builds will take longer as artifacts for each repo must be built serially to avoid collisions
during synchronization of non-architecture specific packages.

• Synchronizations will take longer and require more bandwidth to transfer when there are multiple
architectures due to the increased number of artifacts being built.

End user impact

No end user impact is expected.

122 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Deployers will now be able to create deployments with servers of multiple CPU architectures included.

No other deployer impact is expected as the detection of multiple architectures, deploy of the required
number of repo masters for each architecture, and build of artifacts for each architecture should happen
dynamically.

Developer impact

Developer impact will be minor. Developers will now be able to develop for and test deployments across
multiple CPU architectures. It also enables development of roles specific to other CPU architectures in
the future, such as ARM.

Dependencies

N/A

10.5.3 Implementation

Assignee(s)

Primary assignee:
ashana@us.ibm.com/ashana

Other contributors:
adreznec@us.ibm.com/adreznec thorst@us.ibm.com/thorst

Work items

• Add a repo discovery task to determine the CPU architectures used across all hosts, and assign and
store facts about the master for each architecture.

• Modify the repo-server playbook to support deploying a build master for each CPU architecture.

• Modify the repo-build playbook to support building repos for each CPU architecture in serial.

• Update the build tasks to support tagging each artifact with a corresponding CPU architecture.

• Update the repo synchronization to support synchronizing artifacts from each build master out to
all other slaves, regardless of CPU architecture.

• Updates across tasks to use the new tagged artifact names.

• Ensure binary packages are available on all package mirrors/locations for ppc64el in addition to
i386/amd64, or that documentation is added to note where packages arent available.

10.5. Multiple CPU Architecture Support 123

mailto:ashana@us.ibm.com/ashana
mailto:adreznec@us.ibm.com/adreznec
mailto:thorst@us.ibm.com/thorst

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.5.4 Testing

A new test job will be added that deploys a two-node configuration, with one node belonging to the
upstream/default architecture (x86) and the other of an additional CPU architecture to be supported
(ppc64el, arm64, etc).

10.5.5 Documentation impact

Documentation covering how to configure multi-arch support will be added to the user guide.

10.5.6 References

• http://specs.openstack.org/openstack/openstack-ansible-specs/specs/newton/
powervm-virt-driver.html

10.6 Only support venv installs

date
2016-06-27 13:30

tags
python, venv, deployment

The purpose of this spec is remove support for installing OpenStack services and dependent pip packages
outside of Python virtual environments.

• https://blueprints.launchpad.net/openstack-ansible/+spec/only-install-venvs

10.6.1 Problem description

Conflicts between system packages and globally installed Python pip packages can lead to broken services
and strange behavior. The default installation option of OpenStack services since the Liberty release has
been to use virtual environments to isolate each individual service. This should be the only supported
option going forward.

10.6.2 Proposed change

Each role will be updated to remove tasks and variables related to allowing the option of installing pip
packages outside of a virtual environment. The tasks which currently handle installing virtual environ-
ments will also be updated to ensure that they are idempotent and can recover properly from an interrup-
tion in a previous run of the same role.

124 Chapter 10. Newton Specifications

http://specs.openstack.org/openstack/openstack-ansible-specs/specs/newton/powervm-virt-driver.html
http://specs.openstack.org/openstack/openstack-ansible-specs/specs/newton/powervm-virt-driver.html
https://blueprints.launchpad.net/openstack-ansible/+spec/only-install-venvs

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

Leave the roles as they are. Deployment of OpenStack services would continue being supported through
either virtual environments or installed as global system Python packages.

Playbook/Role impact

See Proposed change.

Upgrade impact

Installing services to virtual environments has been the default since the Liberty release. If any Mitaka
deployments are still configured to not install services to virtual environments, they will be forced to
beginning in the Newton release.

Security impact

N/A.

Performance impact

Tasks which are currently being skipped will be removed, which could slightly decrease role run times.

End user impact

N/A.

Deployer impact

The *_venv_enabled variables will no longer exist and will have no effect if set by a deployer.

Developer impact

N/A.

Dependencies

N/A.

10.6. Only support venv installs 125

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.6.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~jimmy-mccrory (jmccrory)

Work items

• Remove tasks related to installation of pip packages outside of a venv from each role

• Remove variables which currently toggle installation of pip packages to a venv from each role

• Update each role to make tasks which create and install packages to a venv more resilient and
idempotent

10.6.4 Testing

Both integrated and independent role gate testing are already only installing services to virtual environ-
ments.

10.6.5 Documentation impact

Should be minimal.

10.6.6 References

N/A.

10.7 Overhaul of the current OpenStack-Ansible Installation Guide

date
2016-05-31 00:00

tags
docs

Blueprint: Overhaul of the current OpenStack-Ansible Installation Guide

• https://blueprints.launchpad.net/openstack-ansible/+spec/install-guide

• https://blueprints.launchpad.net/openstack-ansible/+spec/osa-install-guide-overhaul

After the 2016 Austin summit, there was a discussion and a consensus surrounding the current state of
the OpenStack-Ansible Installation Guide.

Note: A blueprint and spec were previously created with the intention of improving the documentation
that pushed the summit discussion.

126 Chapter 10. Newton Specifications

https://launchpad.net/~jimmy-mccrory
https://blueprints.launchpad.net/openstack-ansible/+spec/install-guide
https://blueprints.launchpad.net/openstack-ansible/+spec/osa-install-guide-overhaul
https://review.openstack.org/#/c/241037/1

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Currently, the OpenStack-Ansible install guide has minimal installation information, and a lot of config-
uration information. This specification proposes a more formalized plan to separate this information and
streamline the installation guide to make it easier and quicker to install OpenStack.

10.7.1 Problem description

The OpenStack-Ansible Installation Guide contains information that does not necessarily pertain to that
of an installation guide structure. It has accumulated a lot of configuration information and reference
information that reduces the users focus and simplicity to install OpenStack.

The current installation guide also does not follow the openstack-manuals documentation conventions.

10.7.2 Proposed change

The main focus of the installation guide is reorganising and developing content so a deployer makes
very few decisions and minimal configuration to deploy an OpenStack test environment and production
environment.

The proposed changes are:

• Clearly define reference architecture and develop use case configuration examples in an appendix.

• Removal of the configuration information from the current installation guide and including it in
the OpenStack-Ansible role documentation.

• Migrate operations content temporarily to openstack-ansible-ops repo until an operations guide
can be produced.

• Restructure the guide to include basic deployment configuration.

• Appendices that include configuration file examples, neutron plugins, cinder options and additional
resources relevant to an OpenStack-Ansible installation.

• Include links to role based documentation from the Installation Guide.

Alternatives

• Leaving the installation guide as is, and migrating only the configuration information to the devel-
oper docs.

• Consider revising the installation guide to meet criteria in project-specific installation guide and
publish to docs.openstack.org

Playbook/Role impact

N/A

10.7. Overhaul of the current OpenStack-Ansible Installation Guide 127

http://specs.openstack.org/openstack/docs-specs/specs/newton/project-specific-installguides.html

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade impact

N/A

Security impact

N/A

Performance impact

N/A

End user impact

These changes will hopefully improve the end user experience, by providing a more structured and better
flow of information to install OpenStack.

Deployer impact

N/A

Developer impact

Move existing content over to the roles first, then developers must submit any new documentation to the
role repositories.

Dependencies

N/A

10.7.3 Implementation

Assignee(s)

Primary assignee:
Alexandra Settle (asettle)

Other contributors:
Darren Chan (darrenc), Jesse Pretorius (odyssey4me), Travis Truman (automagically), Major Hay-
den (mhayden)

128 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• Clarify and obtain consensus on the content structure

• Gather information from SMEs as needed

• Create a draft directory for installation guide changes

• Create a work items list and allocate resources

• Ensure documentation meets openstack-manuals writing conventions

• Test draft documentation before publication

10.7.4 Testing

The testing will be conducted by the community once a draft is available. OpenStack-Ansible users will
be asked to follow the new installation guide to install OpenStack and evaluate if the information provided
is accurate, clear, and concise.

10.7.5 Documentation impact

This is a documentation change, N/A.

10.7.6 References

• Design Summit discussion

• ToC planning

10.8 Support PowerVM Virt Driver

date
2016-03-18 14:45

tags
ansible, powervm

The purpose of this spec is to add support for the PowerVM compute platform to OpenStack-Ansible. This
will enable deployment of PowerVM systems as OpenStack compute nodes alongside the core OpenStack
components.

https://blueprints.launchpad.net/openstack-ansible/+spec/powervm-virt-driver

10.8. Support PowerVM Virt Driver 129

https://etherpad.openstack.org/p/openstack-ansible-newton-role-docs
https://docs.google.com/document/d/1WdcA7jIp8w1C52pJu4JmympFe8cOvcxi1I2E19Y6XYE/edit?ts=5743fe3f#heading=h.jg8guj3uzhzw
https://blueprints.launchpad.net/openstack-ansible/+spec/powervm-virt-driver

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.8.1 Problem description

The PowerVM Compute Driver[1] is currently an out of tree, OpenStack compliant Nova Driver. The
Nova compute team has asked for us to grow our usage before inclusion into the main Nova project. Our
potential users have cited to us that they need OpenStack-Ansible support to bring PowerVM into their
environments.

Bringing this support for the PowerVM driver expands the number of operators that will make use of the
compute driver. It also helps grow the usage so that it meets the requirements from the Nova team for
inclusion into the main source tree.

Openstack-Ansible supports provisioning kvm/qemu compute nodes, and is introducing support for other
virt driver types such as Ironic. This blueprint would add support for the PowerVM Nova Virt Driver.

10.8.2 Proposed change

The PowerVM platform runs virtualization and management resources in a VM. This privileged VM has
authority to manage the system and is where the nova-compute driver runs. It currently supports running
on Ubuntu 15.10[2], and will run on Ubuntu 16.04 in the Newton timeframe.

The PowerVM compute driver can be paired with the standard OVS Agent today, with support for the
Linux Bridge network agent planned for the Newton release. This blueprint covers deploying the nova-
powervm compute driver with the standard networking agents that OpenStack-Ansible supports.

The proposed changes include: * Add support for installing/configuring the PowerVM virt driver and
dependencies * Tests to verify changes to the os_nova role required for PowerVM support

Note: PowerVM also supports a platform-specific Shared Ethernet ML2 Agent, which is not covered in
this blueprint.

Alternatives

• Maintain independent PowerVM Ansible playbooks - This requires reinvention of base function
and does not meet operator requirements.

Playbook/Role impact

See the Work Items for the playback/role impact. There will be a new nova-compute tag of nova-powervm
that operators would use to support the PowerVM compute driver, and references to nova_virt_type will
be updated to reflect a powervm option.

Upgrade impact

None. The nova-powervm driver is new for OpenStack-Ansible, and as such has no upgrade impact.

130 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

None.

Performance impact

None.

End user impact

Deployers will be able to deploy compute nodes with the PowerVM virt driver.

Deployer impact

PowerVM specific configuration options will be added to the OpenStack-Ansible os_nova role. When
support for PowerVM as a virt driver is enabled these config options will be used during deploy; however
it is expected PowerVM support will be disabled by default, requiring that deployers explicitly enable
PowerVM support and configure hosts for openstack-ansible to use.

Documentation of these new configuration items will be provided and a set of defaults will also be pro-
vided. The PowerVM driver has limited its configuration to be minimal, so the operators should only
have a few required options to set when PowerVM is selected as the virt driver.

Developer impact

The existing development team will be asked for reviews and approvals of the change sets. The PowerVM
driver team will do the necessary implementation and support of this function.

Dependencies

• Ironic nova_virt_type enhancements [4] - (Merged) This introduces support for additional
nova_virt_types, which this work will expand on.

• Open vSwitch agent support [5] - Soft dependency on this to introduce OVS support, which the
PowerVM computer driver supports today.

• Ubuntu 16.04/Multi-Host Support [6] - Needed to support Ubuntu 16.04, which will be the target
OS for the PowerVM driver in the Newton timeframe.

10.8.3 Implementation

Assignee(s)

Primary assignee:
Wang Qing wu - wangqwsh on IRC and Launchpad

Other contributors:
Drew Thorstensen - thorst on IRC and Launchpad Adam Reznechek - adreznec on IRC and Launch-
pad

10.8. Support PowerVM Virt Driver 131

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

Multiple changes would be needed:

• Update the openstack_other.yml in the main openstack-ansible project to include the nova-
powervm project.

• Define a new tag called nova-powervm. This will be used across the openstack-ansible projects.

• Add powervm to the nova_virt_types structure alongside the necessary variable requirements for
driver configuration, matching the other compute types.

• As required, add nova.conf templating for powervm-specific configuration options that is condi-
tionally included when nova_virt_type is powervm.

• Create a new nova_compute_powervm.yml in the openstack-ansible-os_nova project. This will
contain the tasks needed to ensure the powervm driver is installed and configured on the system.

• Update the existing nova_compute.yml to include the nova_compute_powervm.yml and add the
appropriate conditionals for that import.

• Create a new nova_compute_powervm_install.yml, which will be included by
nova_compute_powervm.yml. It will ensure that the necessary configuration and dependencies
for running the PowerVM driver are in place.

• Update documentation and comments indicating the new PowerVM nova_virt_type and how to
configure OpenStack-Ansible for the PowerVM driver.

• Automated unit test (see Testing)

10.8.4 Testing

The PowerVM Driver CI System is currently using devstack for its set up. This cloud will be updated to
make use of OpenStack-Ansible to deploy the operator cloud that runs the CI infrastructure.

A new test-install-nova-powervm.yml will be created for validating the new powervm playbooks within
the openstack-ansible-os_nova project.

10.8.5 Documentation impact

Documentation covering how to enable and configure PowerVM support will be added to the user guide.

10.8.6 References

1. nova-powervm driver: https://github.com/openstack/nova-powervm

2. PowerVM NovaLink: https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/
wiki/Power%20Systems/page/Introducing%20PowerVM%20NovaLink

3. PowerVM Mitaka Update: https://www.ibm.com/developerworks/community/wikis/home?
lang=en#!/wiki/Power%20Systems/page/OpenStack%20and%20PowerVM%20-%20Mitaka%
20Update

4. Nova config for os_ironic: https://review.openstack.org/#/c/293315

5. Neutron Open vSwitch Agent support: https://review.openstack.org/#/c/298765/

132 Chapter 10. Newton Specifications

https://github.com/openstack/nova-powervm
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/Introducing%20PowerVM%20NovaLink
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/Introducing%20PowerVM%20NovaLink
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/OpenStack%20and%20PowerVM%20-%20Mitaka%20Update
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/OpenStack%20and%20PowerVM%20-%20Mitaka%20Update
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/OpenStack%20and%20PowerVM%20-%20Mitaka%20Update
https://review.openstack.org/#/c/293315
https://review.openstack.org/#/c/298765/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

6. Support Ubuntu 16.04: https://blueprints.launchpad.net/openstack-ansible/+spec/
multi-platform-host

10.9 Additional Role for Gnocchi Deployment

date
2016-01-20 11:20

tags
gnocchi, openstack-ansible

The purpose of this spec is to add support for the OpenStack Gnocchi program to OpenStack-Ansible.
This would allow the deployment of Gnocchi along with the core OpenStack components using
OpenStack-Ansible.

Blueprint - Gnocchi deployment on OpenStack-Ansible:

https://blueprints.launchpad.net/openstack-ansible/+spec/role-gnocchi

10.9.1 Problem description

Presently, while deploying OpenStack using OpenStack-Ansible only the core OpenStack components get
deployed. The deployment of other components (eg: Gnocchi) via Ansible playbooks is not supported
yet and to use this components services, they need to be deployed manually.

Gnocchi[1] is a multi-tenant timeseries, metrics, and resources database. It is designed to store metrics
at a very large scale and to allow the retrieval of those metrics quickly and efficiently, each through an
HTTP REST interface. Additionally, Gnocchi is designed to stand as a replacement storage engine for
metrics processed through Ceilometer, relying on a more performant storage format.

10.9.2 Proposed change

This spec proposes to allow deployment and management of this service with a versatile configuration
capable of scaling in a way that conforms to both the best practices from the Gnocchi and Telemetry
communities as well as with those of the OpenStack-Ansible community.

This involves adding support for the Gnocchi services, and the Gnocchi client[2] into the appropriate
hosts and containers. It also involves the optional configuration of Ceilometer to use Gnocchi in lieu of
the currently supported MongoDB storage solution.

The proposed changes include:

• Creation of an openstack-ansible-os_gnocchi repository and Ansible role to support the deploy-
ment and management of Gnocchi services.

• Tests to verify the new Ansible role and the integration with OpenStack services.

• Documentation to support the roles operation and common deploy configurations.

10.9. Additional Role for Gnocchi Deployment 133

https://blueprints.launchpad.net/openstack-ansible/+spec/multi-platform-host
https://blueprints.launchpad.net/openstack-ansible/+spec/multi-platform-host
https://blueprints.launchpad.net/openstack-ansible/+spec/role-gnocchi

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

None

Playbook/Role impact

Test playbooks will be placed in the openstack-ansible-os_gnocchi repository for functional testing pur-
poses. Some changes are anticipated within the openstack-ansible-os_ceilometer role to configure de-
ployment options needed for an optional integration where Ceilometer uses Gnocchi as its storage en-
gine. Further a playbook, necessary group_vars and env and conf profiles would be provided for the
openstack-ansible repository to complete the integration.

Upgrade impact

None. While an operator who had previously deployed Ceilometer might be interested in deploying
Gnocchi, there is no migration model for exporting data from Ceilometer internal storage to Gnocchi
storage. The Gnocchi role and any supporting changes to the Ceilometer role would make the transition
as simple as running the associated playbooks.

Security impact

None.

Performance impact

The underlying storage used for Gnocchi would experience higher traffic, which might require a deployer
to account for that additional traffic through additional tuning.

No other performance impacts are expected.

End user impact

OpenStack users would be able to make use of Gnocchi as a multi-tenant high volume timeseries data
store when deployers use the role and associated playbook to deploy Gnocchi.

Deployer impact

This work provides an optional role for use in the OpenStack-Ansible tooling for use in their environ-
ments.

134 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

Some conditionals may be introduced into the Ceilometer role to facilitate the clean deployment of Gnoc-
chi as a storage engine for Ceilometer. All other changes would be self-contained or limited to the intro-
duction of new variables and a playbook which should present little to no additional cognitive load for
developers.

Dependencies

Only a MySQL-compatible RDBMS is proposed for the Gnocchi index. Only filesystem, Ceph, and
Swift storage engines are proposed. All of these are currently available within OpenStack-Ansible.

No support is proposed at this time for use of Graffana as a dashboard or the use of the statsd service
endpoints for Gnocchi. In this way we avoid introducing any new dependencies.

10.9.3 Implementation

Assignee(s)

Primary assignee:
Steve Lewis (IRC: stevelle)

Other contributors:
None

Work items

1. Ask for the new repository, openstack-ansible-os_gnocchi, to be created

2. Create the role for Gnocchi support:

• Add support for running Gnocchi services (api and metricd) with basic convergence testing.

• Add an Ansible module to leverage gnocchiclient, which is the command line interface tool for
using and managing Gnocchi.

• Introduce a playbook for deploying Gnocchi with OpenStack-Ansible.

• Add support for Gnocchi as an optional storage engine for Ceilometer.

• Add a full scenario test (described below) to ensure successful integration of Gnocchi.

• Add documentation to the role, and possibly general documentation to the install guide for deploy-
ing Gnocchi with each of the various supported storage engines.

10.9. Additional Role for Gnocchi Deployment 135

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.9.4 Testing

In an environment where the role is integration tested through the openstack-ansible repository in one
monolithic stack, the additional effort of deploying this additional project could add as much as a few
minutes to gate testing. That is not desirable.

To preclude the need for that additional step in the main gate, a longer scenario test is proposed for
inclusion in the openstack-ansible-os_gnocchi role, to integrate with Keystone, Nova, Cinder, Glance,
Neutron, Ceilometer, and Gnocchi with metrics collection enabled and with Nova being exercised to
ensure metering data propagates through the OpenStack environment.

This can then be verified through the use of the Ansible module for gnocchiclient by querying for the
expected measures.

10.9.5 Documentation impact

Role-specific documentation describing the configuration of Gnocchi will be required.

10.9.6 References

• [1] Gnocchi: http://gnocchi.xyz/

• [2] Gnocchi client: http://git.openstack.org/cgit/openstack/python-gnocchiclient/

10.10 Additional Role for Tacker Service Deployment

date
2016-10-19 12:30

tags
tacker, openstack-ansible

The purpose of this spec is to add support for the OpenStack Tacker service to OpenStack-Ansible. This
would allow the deployment of Tacker along with the core OpenStack components using OpenStack-
Ansible.

Blueprint - Tacker deployment on OpenStack-Ansible:

https://blueprints.launchpad.net/openstack-ansible/+spec/role-tacker

10.10.1 Problem description

Presently, while deploying OpenStack using OpenStack-Ansible only the core OpenStack components
get deployed. The deployment of other components (eg: Tacker) on playbooks is not supported yet and
to use other components services, they need to be deployed manually.

136 Chapter 10. Newton Specifications

http://gnocchi.xyz/
http://git.openstack.org/cgit/openstack/python-gnocchiclient/
https://blueprints.launchpad.net/openstack-ansible/+spec/role-tacker

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.10.2 Proposed change

This change involves adding support for the Tacker server, Tacker client, and Tacker Horizon dashboard
interface.

The proposed changes include:

• Creation of an openstack-ansible-tacker repository and Ansible role to support the deployment of
Tacker.

• Tests to verify the new Ansible role.

• Deployment of Tacker client

• Deployment of Tacker Horizon

Alternatives

None

Playbook/Role impact

Test playbooks will be placed in the openstack-ansible-tacker repository for functional testing purposes,
with no initially proposed changes to OpenStack-Ansible playbooks.

In the future, once the Tacker role has reached a muture state, a future spec will address the integration
of the Tacker role with the main OpenStack-Ansible repository.

Upgrade impact

None

Security impact

None.

Performance impact

None.

End user impact

Deployers will be able to deploy Tacker service through OpenStack-Ansible framework for VNF man-
agement and orchestration purposes.

10.10. Additional Role for Tacker Service Deployment 137

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

When support for the new Tacker role is added to the parent repository, new Tacker specific configuration
options will be made available. This will provide an optional role for use in the OpenStack-Ansible
toolbox for the deployers.

Developer impact

As this change is self-contained initially, no impact on other developers is expected.

Dependencies

None

10.10.3 Implementation

Assignee(s)

Primary assignee:
Jeff Rametta (IRC: jcrst)

Other contributors:
None

Work items

1. Ask for the new repository, openstack-ansible-tacker, to be created

2. Create the role for Tacker support

• Add support for running tacker-sever

• Add support for python tacker client

• Add support for Tacker Horizon dashboard

• Add documentation and install guide for the role

10.10.4 Testing

The usual gate checks can be used for these changes. Also, each individual commit can be functionally
tested individually.

138 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.10.5 Documentation impact

Adding support to the user guide on how to enable Tacker support will be required.

10.10.6 References

• Tacker server: https://git.openstack.org/cgit/openstack/tacker/

• Tacker client: https://git.openstack.org/cgit/openstack/python-tackerclient

• Tacker Horizon: https://git.openstack.org/cgit/openstack/tacker-horizon

10.11 Apply RHEL 7 STIG hardening standard

date
2016-08-11 00:00

tags
security

The Security Technical Implementation Guide (STIG) for Red Hat Enterprise Linux (RHEL) 7 is in the
final stages of release. The security hardening role needs to be updated to apply these new requirements
to Ubuntu 16.04, CentOS 7 and RHEL 7.

• https://blueprints.launchpad.net/openstack-ansible/+spec/security-rhel7-stig

10.11.1 Problem description

Today, the openstack-ansible-security role uses the RHEL 6 STIG as the basis for all of the security
configurations applied to Ubuntu 14.04, Ubuntu 16.04, CentOS 7, and RHEL 7. However, the new
RHEL 7 STIG is in the final stages of its release and the new security configurations provide a stronger
security posture for all systemd-based distributions, including:

• Ubuntu 16.04

• CentOS 7

• RHEL 7

There are some challenges with a wholesale change to the RHEL 7 STIG:

• It doesnt apply well to Ubuntu 14.04

• It uses a new numbering scheme which doesnt match with the RHEL 6 STIG

• Many tasks have no overlap with the RHEL 6 STIG

10.11. Apply RHEL 7 STIG hardening standard 139

https://git.openstack.org/cgit/openstack/tacker/
https://git.openstack.org/cgit/openstack/python-tackerclient
https://git.openstack.org/cgit/openstack/tacker-horizon
https://blueprints.launchpad.net/openstack-ansible/+spec/security-rhel7-stig

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.11.2 Proposed change

The current role structure is flat and the differences between the distributions are handled within each
task YAML file. The proposed new layout would look something like this:

/main.yml
/rhel6stig/main.yml
/rhel6stig/auth.yml
/rhel6stig/boot.yml
/rhel6stig/...
/rhel7stig/main.yml
/rhel7stig/auth.yml
/rhel7stig/boot.yml
/rhel7stig/...

The root main.ymlwould have a when: that would include the correct main.yml from the STIG version
subdirectories. This comes with some nice benefits:

1. This would ensure that the functionality for Ubuntu 14.04 is unchanged.

2. When support for Ubuntu 14.04 is no longer needed, it could easily be removed later by simply
removing the rheli6stig directory and the corresponding include: from the root main.yml
file.

3. Some of the existing clutter in the role could be removed since Ubuntu 16.04, CentOS 7 and RHEL
7 are closely aligned (because they all use systemd).

Alternatives

Switch the entire role to the RHEL 7 and drop Ubuntu 14.04 support.
This could be upsetting for existing users of the role on 14.04.

Interleave the RHEL6/RHEL7 STIG configurations in the existing role
This could lead to lots of clutter and could add difficulty when Ubuntu 14.04 support needs to be
removed.

Create a new role
Deployers could be confused by a new role and it would require changes to OpenStack-Ansibles
integrated build.

Playbook/Role impact

See the Proposed change section above for details.

140 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade impact

If a deployer is running the Newton release of the role on Ubuntu 16.04, CentOS 7, or RHEL 7, they
will notice lots of additional security configurations being applied by the role per the requirements of the
RHEL 7 STIG. Backing out security configurations from the previous versions of the role shouldnt be
necessary.

Security impact

This change will improve the roles capability to secure new systemd-based distributions, such as Ubuntu
16.04, CentOS 7, and RHEL 7.

Performance impact

As with the previous versions of the role, the updates to the role from the RHEL 7 STIG should not cause
performance impacts or downtime on the system.

End user impact

End users should not notice a difference when these changes are made.

Deployer impact

Deployers will apply the role using the same commands as they do now. However, they will see some
new changes:

• New configurations being applied that werent being applied previously

• New variables for controlling the security configurations in the RHEL 7 STIG

Developer impact

Developers must ensure that RHEL 7 STIG content is kept separate from RHEL 6 content. This will be
documented within the tasks themselves as well as in the formal role documentation.

Dependencies

This change has no dependencies.

10.11. Apply RHEL 7 STIG hardening standard 141

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.11.3 Implementation

Assignee(s)

Primary assignee:
Major Hayden (LP: rackerhacker, IRC: mhayden)

Work items

1. Create a directory for the RHEL 7 STIG content and begin adding tasks there to apply security
configurations.

2. Update documentation to reflect the new configurations and any new variables which exist to con-
figure the roles actions.

3. When the RHEL 7 STIG content is working well on Ubuntu 16.04, CentOS 7, and RHEL 7, the
root main.yml should include the tasks from the RHEL 7 STIG directory.

4. At a later date, Ubuntu 14.04 support could be removed by deleting the RHEL 6 directory, removing
unneeded variables, and removing unneeded documentation.

10.11.4 Testing

The OpenStack CI environment would test the security role in the same way that it does now. Testing
could be adjusted during the first phase of RHEL 7 STIG development so that both pathways (RHEL 6
STIG and RHEL 7 STIG) are tested on Ubuntu 16.04 and CentOS 7.

RHEL 7 testing will need to be manual since OpenStack CI has no RHEL image.

10.11.5 Documentation impact

New documentation will be needed for the RHEL 7 STIG security configurations as well as any new
variables that are introduced. This will need to be done carefully (perhaps in a draft directory) until the
RHEL 7 STIG content is ready to be applied to Ubuntu 16.04 and CentOS 7.

10.11.6 References

• DISA STIGs: http://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx

• openstack-dev mail: http://lists.openstack.org/pipermail/openstack-dev/2016-August/100883.
html

142 Chapter 10. Newton Specifications

http://iase.disa.mil/stigs/os/unix-linux/Pages/index.aspx
http://lists.openstack.org/pipermail/openstack-dev/2016-August/100883.html
http://lists.openstack.org/pipermail/openstack-dev/2016-August/100883.html

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.12 standalone-swift

date
2015-07-07 22:00

tags
swift, aio, tests

This spec exists to allow for testing a diferent deployment methodogy, namely swift deployments. The
problem is the openstack_user_config.yml.aio file defines hosts that are not needed for an AIO deploy-
ment.

• https://blueprints.launchpad.net/openstack-ansible/+spec/standalone-swift

10.12.1 Problem description

Deploying aio for testing deploys all Openstack services only swift is desired. We are not testing this
deployment type.

10.12.2 Proposed change

• add openstack_user_config.yml.aio.swift for swift only deployments.

• add/modify the deployment scripts to add a switch for swift only deployments.

• modify tests to allow for swift only deployments.

Alternatives

N/A

Playbook impact

Minimal to no impact to the actual playbooks.

Upgrade impact

N/A

Security impact

N/A

10.12. standalone-swift 143

https://blueprints.launchpad.net/openstack-ansible/+spec/standalone-swift

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

N/A

End user impact

Allows the end user to use the openstack_user_config.yml.aio.swift file as a template to base their own
swift deployments.

Deployer impact

The playbooks would remain unchanged, only deployers using the scripts may need to change, this does
not alter default behavior.

Developer impact

This would allow testing of standalone swift deployments.

Dependencies

N/A

10.12.3 Implementation

Assignee(s)

Primary assignee:
prometheanfire

Work items

• create aio file

• add/alter scripts to allow for standalone swift testing (tempest changes)

• add test to project_config

• enable test in openstack-ansible

10.12.4 Testing

This will add a test/vote to openstack-ansible

144 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.12.5 Documentation impact

Possibly pointing out the openstack_user_config.yml.aio.swift file as a template for larger deployments
and documenting the new environment variables.

10.12.6 References

N/A

10.13 Add support for multiple RabbitMQ clusters

date
2016-07-11 21:00

tags
rabbitmq, messaging, notifications, scalability

Larger deployments may wish to provision multiple RabbitMQ clusters such that each cluster is deployed
on its own set of hosts.

Such functionality would allow a deployer to configure one or more additional component and container
skeletons to add inventory groups to be used for the deployment of additional clusters.

10.13.1 Problem description

The current playbook and roles assume a single inventory group: rabbitmq_all that is deployed on
the shared-infra_hosts infrastructure. The inventory group name is hardcoded throughout and the
playbook makes the assumption that only one cluster will ever be needed.

10.13.2 Proposed change

• Modify the rabbitmq_server role to be more configurable with respect to the inventory group(s)
that it operates upon

• Modify the rabbitmq-install play to be more configurable with respect to the inventory group it
operates upon

Alternatives

Im not aware of alternative ways for the project to address this need.

10.13. Add support for multiple RabbitMQ clusters 145

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

Initial impacts will be to the rabbitmq_server role and the rabbitmq-install play. However, I expect that
additional impacts may exist within other roles such that they would need to change to be more config-
urable with respect to the inventory group they expect to use for rabbit hosts, or the variables they use to
identify which rabbit hosts they should connect to.

Upgrade impact

Unclear on how upgrades would be impacted. To my knowledge, custom inventory extensions are not
currently handled in the upgrade automation.

Security impact

No unique security impacts. The existing RabbitMQ security posture will be maintained, though addi-
tional secrets may be required.

Performance impact

None expected/anticipated.

End user impact

End users will have increased flexibility in defining their deployment architecture.

Deployer impact

The goal is for the deployer impact to be negligible due to the opt-in nature of the changes discussed.

Developer impact

This change will add some additional complexity for developers, but it should be minimal.

Dependencies

None

10.13.3 Implementation

Assignee(s)

Primary assignee:
travis-truman (automagically)

146 Chapter 10. Newton Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• rabbitmq_server role modifications for inventory group configurability

• rabbitmq-install play modifications for inventory group configurability

• Documentation explaining how to create additional RabbitMQ cluster groups

• Other role modifications to support cluster connectivity configurability

10.13.4 Testing

This should be able to be tested within the rabbitmq_server role functional tests given some changes to
the test inventory.

10.13.5 Documentation impact

An appendix should be added that explains to deployers how to configure their environment for RabbitMQ
multiple cluster support.

10.13.6 References

None

10.14 Support Xen Virt Driver

date
2016-06-03 11:17

tags
ansible, xen

The purpose of this spec is to add support for the Xen Hypervisor to OpenStack-Ansible. This will allow
the use of Xen as an option on OpenStack compute nodes.

https://blueprints.launchpad.net/openstack-ansible/+spec/xen-virt-driver

10.14.1 Problem description

Xen is a tested and supported hypervisor in OpenStack. It is used in some of the largest public clouds
today and would make a good addition to OpenStack-Ansible. Support for Xen exists in the OpenStack
Libvirt Driver today so implementation should not be difficult.

10.14. Support Xen Virt Driver 147

https://blueprints.launchpad.net/openstack-ansible/+spec/xen-virt-driver

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.14.2 Proposed change

The primary change is to add support in OpenStack-Ansible for Xen on CentOS 7, Ubuntu 16.04, and
Ubuntu 14.04 (by using UCA repos). The necessary changes for Xen to work with OpenStack are in Xen
4.5.1 and Libvirt 1.2.15. This blueprint covers deploying the nova-xen compute driver with the standard
networking agents that OpenStack-Ansible supports.

The proposed changes include:

• Add support for installing/configuring the Xen virt driver and dependencies

• Documentation for how to configure a compute to run the Xen virt driver

• Tests to verify changes to the os_nova role required for Xen support

Alternatives

• Maintain independent Xen Ansible playbooks - This requires reinvention of base function and does
not meet operator requirements.

Playbook/Role impact

See the Work Items for the playback/role impact. References to nova_virt_type will be updated to reflect
a xen option.

Upgrade impact

None. The xen driver is new for OpenStack-Ansible, and as such has no upgrade impact.

Security impact

None.

Performance impact

None.

End user impact

End users will be able to deploy compute nodes using the Xen virt driver.

148 Chapter 10. Newton Specifications

http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Xen specific configuration options will be added to the openstack-ansible-os_nova role.

When support for Xen as a virt driver is added these config options will be available for use; however it
is expected that Xen support will be disabled by default, requiring that deployers explicitly enable Xen
support and configure hosts for OpenStack-Ansible to use.

Documentation of these new configuration items will be provided and a set of defaults will also be pro-
vided. The Xen virt driver has limited its configuration to be minimal, so the operators should only have
a few required options to set when Xen is selected as the virt driver.

Developer impact

The existing development team will be asked for reviews and approvals of the change sets. The Xen
driver team will do the necessary implementation and support of this function.

Dependencies

• Multi-platform Host OS Enablement - Needed to support Ubuntu 16.04 and CentOS 7

10.14.3 Implementation

Assignee(s)

Primary assignee:
Antony Messerli - antonym on IRC and Launchpad

Other contributors:

Work items

Multiple changes would be needed:

• Add xen to the nova_virt_types structure alongside the necessary variable requirements for driver
configuration, matching the other compute types.

• As required, add nova.conf templating for xen-specific configuration options that is conditionally
included when nova_virt_type is xen.

• Create a new nova_compute_xen.yml in the openstack-ansible-os_nova project. This will contain
the tasks needed to ensure the xen driver is installed and configured on the system.

• Update the existing nova_compute.yml to include the nova_compute_xen.yml and add the appro-
priate conditionals for that import.

• Create a new nova_compute_xen_install.yml, which will be included by nova_compute_xen.yml.
It will ensure that the necessary configuration and dependencies for running the Xen driver are in
place.

• Update documentation and comments indicating the new Xen nova_virt_type and how to configure
OpenStack-Ansible for the Xen driver.

• Automated unit test (see Testing)

10.14. Support Xen Virt Driver 149

https://blueprints.launchpad.net/openstack-ansible/+spec/multi-platform-host

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

10.14.4 Testing

A new test-install-nova-xen.yml will be created for validating the new xen playbooks within the
openstack-ansible-os_nova project.

10.14.5 Documentation impact

Documentation covering how to enable and configure Xen support will be added to the user guide.

10.14.6 References

Xen and OpenStack required versions: http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_
Xen-Libvirt

Multi-platform Host OS Enablement: https://blueprints.launchpad.net/openstack-ansible/+spec/
multi-platform-host

150 Chapter 10. Newton Specifications

http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt
http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt
https://blueprints.launchpad.net/openstack-ansible/+spec/multi-platform-host
https://blueprints.launchpad.net/openstack-ansible/+spec/multi-platform-host

CHAPTER

ELEVEN

MITAKA SPECIFICATIONS

11.1 Build Facts Archive

date
2015-04-23

tags
archive, deployment, information

Create a script to archive all valuable information about a deployment. This information includes but
is not limited to the following: kernel version of all physical host, version of OSAD that is currently
installed, all installed packages and their versions, all running containers and their installed packages,
latest tempest test run, all relevant OSAD configuration files (openstack_user_config, etc), host network-
ing configuration, host disk configuration.

• https://blueprints.launchpad.net/openstack-ansible/+spec/build-facts-archive

11.1.1 Problem description

Currently there is no simple way to get information about a deployment. The current process requires a
log into the deployment host and then knowledge of ansible and the openstack_inventory.json file and its
groups to correctly structure a ansible query to gather information.

It is also challenging to create a tool outside of OSAD to do some automation around aggregation of
deployment information as you need to parse the inventory file or know exactly which host or container
you need to access to get information.

11.1.2 Proposed change

A simple script that the user can run to gather all predetermined important information to give a solid
top down view of a deployed cluster.

151

https://blueprints.launchpad.net/openstack-ansible/+spec/build-facts-archive

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

This script could live in the rpc-extras repository instead of OSAD. This would not be ideal as it would
only help the users who are using rpc-extras. If it resides in OSAD then all users get a simple way of
getting a quick top down view of what their current cluster has.

Playbook impact

There will need to most likely be a playbook added to accomplish the task of gathering valuable infor-
mation from each host / container based on their role / group. This playbook will not be deployment
impacting.

Upgrade impact

None

Security impact

This could potentially touch all containers to gather secure information such as: configuration files which
may contain passwords, information about keystone users (names, roles, etc). This is a minimal risk as
the user would have to export the output off the host. If someone is running this script they already have
access to this information as they are logged onto the deployment host.

Performance impact

None

End user impact

None

Deployer impact

This change will give the deployer an easy way to gather current information about their cloud. This
could help troubleshoot config problems as well as allow them a quick insight into their latest test results.
This will even allow them to see package discrepencies and help them prepare for an upgrade.

Developer impact

None

152 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

None

11.1.3 Implementation

Assignee(s)

Open to all

Primary assignee:
None

Other contributors:
None

Work items

Create a script to:

• create the archive directory

• gather all relevant deployment information

• tarball archive directory

• move tarball to well known location

• remove archive directory

It would be up to the end user / deployer what they do with the tarball, but it should be placed in a
resonable spot on the deployment host that would be easy to find / access for the deployer.

11.1.4 Testing

This should add a task to gating/commit/nightly to run this script and return the captured archive tarball
as a jenkins artifact. Tempest results could also be sent to jenkins so that the results.xml can be displayed.
This should help developers / qe see testing trends and allow the users of jenkins to more accurately find
bugs in a more timely manner.

11.1.5 Documentation impact

A simple reference to this script in the user guide would be all that is needed if it is determined that it
warrents it.

11.1. Build Facts Archive 153

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.1.6 References

If you look at the current scripts located in the scripts directory

• https://github.com/openstack/openstack-ansible/blob/master/scripts/scripts-library.sh#
L226-L279

a lot of this information is already gathered about the host that the script is run on. This proposal should
use the information that is gathered as a blueprint to some of the information that should be gathered
about all hosts.

11.2 Convert AIO bootstrap to Ansible

date
2015-10-16 00:00

tags
aio, bootstrap, ansible

The process for an AIO installation of openstack-ansible involves a bash script to do the initial bootstrap-
ping of the AIO host. This script works well, but it becomes difficult to update over time and a conversion
to Ansible would make future updates, such as multi-platform-host blueprint, a little easier.

Blueprint - Convert AIO bootstrap to Ansible:

• https://blueprints.launchpad.net/openstack-ansible/+spec/convert-aio-bootstrap-to-ansible

11.2.1 Problem description

The bootstrap-aio.sh script works well, but it can be difficult to read in a few places. Deployers who
are familiar with Ansible, but not bash, may have challenges with updating the script as well.

11.2.2 Proposed change

At this time, the AIO installation has four steps:

• Configuration (optional)

• Bootstrap the AIO build

• Bootstrap Ansible

• Run the openstack-ansible playbooks

This spec proposes the following steps to replace the existing ones:

• Configuration (optional)

• Bootstrap Ansible

• Run AIO playbook (if an AIO deployment is desired)

• Run the openstack-ansible playbooks

154 Chapter 11. Mitaka Specifications

https://github.com/openstack/openstack-ansible/blob/master/scripts/scripts-library.sh#L226-L279
https://github.com/openstack/openstack-ansible/blob/master/scripts/scripts-library.sh#L226-L279
https://blueprints.launchpad.net/openstack-ansible/+spec/multi-platform-host
https://blueprints.launchpad.net/openstack-ansible/+spec/convert-aio-bootstrap-to-ansible

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

The current AIO boostrap script is heavily used by various deployers as well as other downstream
projects, so changes must be made carefully. The proposed work for this spec would proceed as fol-
lows:

• Build out the Ansible role for bootstrapping an AIO build

• Update documentation to allow for early testing

• Change the bootstrap-aio.sh script to call the new AIO bootstrap playbook

• Update the documentation to reflect the new bootstrap script changes

• Remove the bootstrap-aio.sh script at a later date (if needed)

Alternatives

The current bootstrap-aio.sh script could remain as it is now, or it could be simplified to make it
easier to read and update.

Playbook/Role impact

The openstack-ansible playbooks themselves shouldnt change as a result of this update. The AIO boot-
strap is a prerequisite step in the deployment right now and that wont change after the AIO Ansible
playbook is available for use.

Upgrade impact

This change would only affect greenfield deployments of AIO builds. If a deployer has an existing AIO
build deployed, they would not need to run the AIO bootstrap playbook again, even with upgrades.

Security impact

There are no known security impacts of this change.

Performance impact

There are no known performance impacts of this change. The Ansible AIO playbook may be slightly
slower than the bash script, but the difference should be negligible.

End user impact

An end user would not notice this change since it would only affect deployers.

11.2. Convert AIO bootstrap to Ansible 155

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

If deployers are doing greenfield AIO deployments, they will need to follow new steps and ensure they
bootstrap Ansible prior to running the new AIO Ansible playbook. Documentation for AIO builds will
require updates.

If deployers are doing deployments to multiple servers (non-AIO), their steps for deploying openstack-
ansible will not change.

Developer impact

Developers will need to make any future AIO bootstrap changes within the Ansible playbook instead of
the bash script.

Dependencies

This spec doesnt depend on any other blueprint or spec at this time.

11.2.3 Implementation

Assignee(s)

Primary assignee:

• Major Hayden (Launchpad: rackerhacker, IRC: mhayden)

Work items

The last bulleted list in Proposed Changes above details out the work items.

11.2.4 Testing

These changes will impact gating since the gating jobs run an AIO build. However, if the bootstrap-
aio.sh script is changed to call the AIO bootstrap Ansible playbook, the gating job itself will not need to
be changed.

No additional resources should be required during gating to run the Ansible AIO playbook.

11.2.5 Documentation impact

The documentation for AIO deployments would need to be updated with the new steps for bootstrapping
an AIO build. The changes in the steps are in the Proposed Changes section at the top of this spec.

Also, deployers would need to note which environment variables and/or Ansible variables to set to control
various parts of the deployment, such as whether or not to deploy certain OpenStack services in their
environment.

156 Chapter 11. Mitaka Specifications

https://launchpad.net/~rackerhacker

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.2.6 References

No references at this time.

11.3 Independent Role Repositories

date
2015-08-17 14:00

tags
roles

In order to improve the ability to independently consume the roles produced by openstack-ansible in
different reference use-case deployments and allow independent development of each role by different
projects, this specification proposes that:

1. New roles be registered in separate repositories named openstack/
openstack-ansible-<role>.

2. Existing roles can, through an independent blueprint/spec process, be split into their own reposi-
tories.

• https://blueprints.launchpad.net/openstack-ansible/+spec/independent-role-repositories

This provides the following benefits:

• Other projects (eg: DevStack, Kolla, Compass, RPC, etc) will be able to consume the roles us-
ing their own playbooks. This increases the opportunity for other projects to collaborate with
openstack-ansible.

• The roles will be more easily consumed in different reference architectures. Currently the play-
books and roles are specifically geared for deployment in LXC containers. Making the roles in-
dependent entities will allow them to be consumed for completely different architectures. eg: a
deployment without containers, a deployment with VMs instead of containers, a deployment with
a different container technology.

• Each role can be developed at its own pace and versioned independently. This will make openstack-
ansible more like the OpenStack Big Tent.

• Each role can be independently gate checked with checks that are specific and relevant to the role.
This will provide quicker developer feedback and allow a quicker turnaround for development.

• The roles can be registered in Ansible Galaxy. This will provide greater awareness of the roles
and may attract more contributors. This is especially useful for the infrastructure roles which may
have a broader application than just for use in an OpenStack deployment. (eg: haproxy, MariaDB,
etc)

• Role separation will simplify the mission of openstack-ansibles playbooks and scripts to be for
the purpose of providing examples of how to consume the roles and to implement gate testing for
integrated deployment verification of the use-cases that matter to the community. This prevents
the situation where the playbooks have to cater for every possible combination use-case that may
be thrown at them.

11.3. Independent Role Repositories 157

https://blueprints.launchpad.net/openstack-ansible/+spec/independent-role-repositories

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.3.1 Problem description

A detailed description of the problem:

• Currently the openstack-ansible roles are tightly coupled with the playbooks that consume them.
While the roles can technically be consumed using different playbooks, this is not immediately
obvious to downstream consumers.

• When consumers to try to consume the roles with different playbooks for a different architecture,
they are forced to implement many workarounds for the tight coupling that we have. Even when
it is possible to do, it is hard for a deployer to see how to do it due to the deluge of variables that
need to be set and code that needs to be read.

• There has been some interest in creating roles for other services (eg: rally, congress, etc). Imple-
menting the strategy of a repo per role allows these fledgling roles to get into the open and get
collaborated on far more quickly. Once theyre at the point where theyre ready to be integrated into
an integrated use-case with integration gate tests, then they can tag a version and implement the
openstack-ansible playbooks and scripts to test the appropriate use-case.

• The infrastructure roles implemented as part of the project are not getting much attention as they
are more like a second-class citizen within the role structure. This results in the configurations
deployed often not lining up to best-practices.

• Any small changes to roles require the execution of a full integration gate test which is slow and
prone to error. It is difficult to isolate the error in the current monolithic stack.

11.3.2 Proposed change

The following documentation should be developed:

1. The primary use-cases/implementations tested by the project.

2. How to apply to add a new use-cases for integration testing.

3. How to register a new role within openstack-ansibles umbrella.

4. First steps for building a new role.

5. Update the README for each role to describe how to use it independently, whether using a static
inventory or the dynamic inventory. It should also cover what options are available for its use,
whether it relies on any other roles, how upgrades are handled, any known issues, etc.

The following process should be followed for registering new roles:

1. A blueprint must be registered and a spec for the implementation provided for review, with specific
attention paid to any changes that would need to be made in the current openstack-ansible playbooks
and roles to integrate the new role.

2. Once the spec is approved, the review to register the new repository should be registered upstream
by the openstack-ansible PTL or a nominated openstack-ansible-core team member.

3. Once the new repository has been created, work can commence on the new role.

4. Before the first tag is set for the role, comprehensive testing for the role must already be in place.

The following process should be followed for breaking out existing roles:

158 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

1. For each role targeted for breaking out, a separate blueprint must be registered and a spec provided
for the high level changes that would be required in the current openstack-ansible playbooks and
roles to accommodate this change.

2. Once the spec is approved, the review to register the new repository should be registered upstream
by the openstack-ansible PTL or a nominated openstack-ansible-core team member.

3. Once the new repository has been created, work can commence on extracting the role as planned
in the spec for the roles migration.

4. Once independent gate checks on the role repository confirm that it is in working order and the
work is done to prepare the role for usage in the integrated use-cases, tag the initial version of
the role and implement the openstack-ansible playbook, script and role-requirements changes to
consume the new role. The changes in openstack-ansible will need to pass the integrated gate
checks before they can merge.

Alternatives

Leave everything as it is and continue to merge any new roles proposed into the same monolithic repos-
itory.

Playbook/Role impact

The impact to playbooks should be fairly incremental, but will need to be determined on a role by role
basis. This must be described in the spec on a per role basis.

It is clear that the libraries, filters and plugins will need to be broken out into its own repository and each
role that consumes them will need to use a submodule reference in the role. This ensures that all the roles
use a common set of libraries, filters and plugins.

Upgrade impact

There are two aspects of upgrade impact to be considered:

1. The ability for the role itself to handle upgrades from previous interations of itself.

2. The ability for the integrated build use-cases that consume the role to be upgradable.

Each role should be developed with upgradability in mind and conform to the upgrade framework which
is being developed for the Kilo -> Liberty upgrade process.

Security impact

n/a

11.3. Independent Role Repositories 159

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

n/a

End user impact

End users will not know of any differences.

Deployer impact

The structure and placement of roles on the deployment host will be different. The changes will need to
be documented for support purposes. However, the configuration and execution of the existing playbooks
for downstream consumers should be targeted to be exactly the same to minimise disruption.

Any role-specific impacts will need to be defined on a per-role basis.

Developer impact

The biggest negative developer impact will be the difficulty working between the two different structures
- master being split, with liberty and kilo being consolidated. It may be worth considering ways to make
them all work the same way once the conversions are done for master.

The positive impact has been outlined in the introduction.

Dependencies

This should only be implemented after liberty has been released.

11.3.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~jesse-pretorius odyssey4me https://launchpad.net/~kevin-carter
cloudnull

Other contributors:
TBD

Work items

See proposed change section.

160 Chapter 11. Mitaka Specifications

https://launchpad.net/~jesse-pretorius
https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.3.4 Testing

The testing impact will need to be described on a per-role basis.

As a standard, the following tests are expected to be implemented as a standard for each role:

• bashate tests for all shell scripts

• pep8 tests for all python files

• ansible syntax checks for all ansible task files

• ansible-lint tests for all ansible task files

• functional tests for the service

Integration tests are expected to be implemented in the openstack-ansible repository and executed when-
ever the role versions are incremented. This ensures that a role tag increment is only accepted for an
integrated release once it passes a full set of integration tests.

11.3.5 Documentation impact

While the placement of the role files on the deployment host will be different, the configuration and
execution of the deployment should remain the same, resulting in minimal documentation impact.

See the proposed change section for developer reference documentation to be developed.

11.3.6 References

n/a

11.4 Installation Guide

date
2015-11-02 22:00

tags
install, config, architecture

https://blueprints.launchpad.net/openstack-ansible/+spec/install-guide

Improve the installation guide to appeal to more potential deployers.

11.4.1 Problem description

The current installation guide mainly supports only one rather complex deployment architecture that
limits the apparent flexibility and appeal of the project to potential deployers.

11.4. Installation Guide 161

https://blueprints.launchpad.net/openstack-ansible/+spec/install-guide

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.4.2 Proposed change

Improve the installation guide to offer several useful deployment architectures ranging from simple to
complex.

Alternatives

Continue using the existing content that contains significant technical debt from decisions made prior to
entry into the Stackforge and later OpenStack namespaces.

Playbook/Role impact

None.

Upgrade impact

None, although a separate specification should address development of upgrade documentation referenc-
ing the deployment architectures in the installation guide as necessary.

Security impact

None, although the deployment architectures should implement security measures as necessary.

Performance impact

None, although more complex deployment architectures could perform poorly on hardware that disre-
gards minimum requirements.

End user impact

None.

Deployer impact

A variety of different deployment architectures ranging from simple to complex highlight the flexibility
of this project and increase appeal to potential deployers.

Developer impact

Developers should understand these deployment architectures and adjust them as necessary to account
for new services, changes to existing services, changes to infrastructure requirements, etc.

162 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

None.

11.4.3 Implementation

Assignee(s)

Primary assignee:
None

Other contributors:
None

Work items

• Develop several deployment architectures that range from simple to complex and attempt to mini-
mize opinions regarding OpenStack service configuration and operation. For example:

– A simple architecture may include a minimum of two infrastructure nodes and one compute
node using three networks with minimal physical network redundancy and deploy only core
OpenStack services.

– A complex architecture may include a minimum of three infrastructure nodes, one compute
node, and three storage nodes using four networks with reasonable network redundancy and
deploy all OpenStack services.

• Potentially restructure the installation guide to implement these deployment architectures in the
most useful fashion.

11.4.4 Testing

• Verify operation of each deployment architecture prior to each major release.

11.4.5 Documentation impact

• Renovating the installation guide.

11.4.6 References

None.

11.4. Installation Guide 163

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.5 IRR - APT package Pinning

date
2015-11-01

tags
independent-role-repositories, apt_package_pinning

Split out the apt package pinning role into its own repository.

11.5.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.5.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role apt_package_pinning need to be moved from the monolithic stack and
into the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

164 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.5.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.5. IRR - APT package Pinning 165

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.5.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.5.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.5.6 References

n/a

11.6 IRR - Galera

date
2015-11-01

tags
independent-role-repositories, galera

Split out the galera_server and galera_client roles into its own repository.

11.6.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.6.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role galera_server and galera_client need to be moved from the monolithic
stack and into the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

166 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.6. IRR - Galera 167

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.6.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.6.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.6.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.6.6 References

n/a

11.7 IRR - LXC Container Create

date
2015-11-01

tags
independent-role-repositories, lxc_container_create

Split out the lxc container create role into its own repository.

168 Chapter 11. Mitaka Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.7.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.7.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role lxc_container_create need to be moved from the monolithic stack and
into the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

11.7. IRR - LXC Container Create 169

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

The implementation of this spec relies on the following spec(s):

• https://review.openstack.org/#/c/240965

• https://review.openstack.org/#/c/241159

11.7.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.7.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

170 Chapter 11. Mitaka Specifications

https://review.openstack.org/#/c/240965
https://review.openstack.org/#/c/241159
https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.7.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.7.6 References

n/a

11.8 IRR - LXC Host

date
2015-11-01

tags
independent-role-repositories, lxc_host

Split out the lxc host role into its own repository.

11.8.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.8.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role lxc_host need to be moved from the monolithic stack and into the its
own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

11.8. IRR - LXC Host 171

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

The implementation of this spec relies on the following spec(s):

• https://review.openstack.org/#/c/240965

11.8.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

172 Chapter 11. Mitaka Specifications

https://review.openstack.org/#/c/240965
https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.8.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.8.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.8.6 References

n/a

11.9 IRR - Memcached Server

date
2015-11-01

tags
independent-role-repositories, memcached_server

Split out the memcached_server role into its own repository.

11.9.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.9. IRR - Memcached Server 173

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.9.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role memcached_server need to be moved from the monolithic stack and
into the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

174 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.9.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.9.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.9.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.9.6 References

n/a

11.9. IRR - Memcached Server 175

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.10 IRR - OpenStack Hosts

date
2015-11-01

tags
independent-role-repositories, openstack_hosts

Split out the OpenStack hosts role into its own repository.

11.10.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.10.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role openstack_hosts need to be moved from the monolithic stack and into
the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

176 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

The implementation of this spec relies on the following spec(s):

• https://review.openstack.org/#/c/240965

11.10.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.10. IRR - OpenStack Hosts 177

https://review.openstack.org/#/c/240965
https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.10.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.10.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.10.6 References

n/a

11.11 IRR - pip install

date
2015-11-01

tags
independent-role-repositories, pip_install

Split out the pip install role into its own repository.

11.11.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.11.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role pip_install need to be moved from the monolithic stack and into the its
own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

178 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.11. IRR - pip install 179

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.11.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.11.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.11.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.11.6 References

n/a

11.12 IRR - pip_lock_down

date
2015-11-01

tags
independent-role-repositories, pip_lock_down

Split out the pip_lock_down role into its own repository.

180 Chapter 11. Mitaka Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.12.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.12.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role pip_lock_down need to be moved from the monolithic stack and into
the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

11.12. IRR - pip_lock_down 181

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.12.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.12.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.12.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

182 Chapter 11. Mitaka Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.12.6 References

n/a

11.13 IRR - RabbitMQ server

date
2015-11-01

tags
independent-role-repositories, rabbitmq_server

Split out the rabbitmq_server role into its own repository.

11.13.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.13.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role rabbitmq_server need to be moved from the monolithic stack and into
the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

11.13. IRR - RabbitMQ server 183

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.13.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

184 Chapter 11. Mitaka Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.13.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.13.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.13.6 References

n/a

11.14 IRR - Repo Server

date
2015-11-01

tags
independent-role-repositories, repo_server

Split out the repo server role into its own repository.

11.14.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.14.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role repo_server need to be moved from the monolithic stack and into the
its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

11.14. IRR - Repo Server 185

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

186 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.14.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.14.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.14.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.14.6 References

n/a

11.15 IRR - rsyslog client

date
2015-11-01

tags
independent-role-repositories, rsyslog_client

Split out the rsyslog client role into its own repository.

11.15. IRR - rsyslog client 187

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.15.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.15.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role rsyslog_client need to be moved from the monolithic stack and into
the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

188 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.15.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.15.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.15.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.15. IRR - rsyslog client 189

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.15.6 References

n/a

11.16 IRR - rsyslog_server

date
2015-11-01

tags
independent-role-repositories, rsyslog_server

Split out the rsyslog_server role into its own repository.

11.16.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.16.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role rsyslog_server need to be moved from the monolithic stack and into
the its own role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

190 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.16.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.16. IRR - rsyslog_server 191

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.16.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.16.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.16.6 References

n/a

11.17 IRR - Utility

date
2015-11-01

tags
independent-role-repositories, utility

Split out the utility role into its own repository.

11.17.1 Problem description

Roles are all contained within a single monolithic repository making it impossible/difficult to consume
the OSA roles outside of deploying the entire stack.

11.17.2 Proposed change

To ensure that the OSA project is consumable by other stacks using different architectures, deployment
methods, and capabilities the role utility need to be moved from the monolithic stack and into the its own
role repository.

Alternatives

Leave everything the way it is. However doing that will hurt general OSA adoption.

192 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

• No impact to the playbooks.

• The role will be removed from the main stack. The plugins, filters, and libraries may need to be
locally updated.

Upgrade impact

While the change will impact the placement of the role it will not impact upgrade-ability of the stack.
The general workflow will need to be updated to ensure that users are updating roles on upgrade using
the Ansible galaxy interface however generally speaking this is already being done for the deployer when
running the bootstrap-ansible.sh script.

Security impact

n/a

Performance impact

Moving the role to an external repository will cause an impact in time to role resolution however that
impact should be minimal.

End user impact

n/a

Deployer impact

Deployers will need to be aware of the new role locations and how to update existing roles however this
should be minimal considering the tooling for updating existing roles already exists

Developer impact

Developers will need focus work within the roles which will exist within separate repositories.

Dependencies

n/a

11.17. IRR - Utility 193

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.17.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter (IRC: cloudnull)

Work items

• With the role moved, tests will be created within the role via OpenStack CI to ensure that the role
is performing the actions that its supposed to.

• Updated documentation via the README.rst will be created to show how the role can be used
standalone.

• Example local inventory will be created to show how the role can be used. The local only inventory
will also be used for testing the role.

11.17.4 Testing

• The test cases will deploy the role into a regular DSVM image

• The role will execute itself locally

• Once the role has completed an Ansible test play will run through several assert tasks to ensure the
role functioned as intended.

11.17.5 Documentation impact

The base README.rst file will be updated to explain how the role can be used as a standalone role.

11.17.6 References

n/a

11.18 Load Balancers v2 (LBaaSv2 & octavia)

date
2016-01-28 00:00

tags
lbaasv2, octavia, load balancing, neutron

Blueprint: Load Balancers v2 (LBaaSv2 & octavia)

• https://blueprints.launchpad.net/openstack-ansible/+spec/lbaasv2

OpenStack-Ansible currently offers LBaaSv1, but it is deprecated in Liberty and it is scheduled to be
removed in Newton. LBaaSv2 became stable in Liberty and it provides several improvements over
LBaaSv1:

194 Chapter 11. Mitaka Specifications

https://launchpad.net/~kevin-carter
https://blueprints.launchpad.net/openstack-ansible/+spec/lbaasv2

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Multiple TCP ports per load balancer: This helps when hosting websites which must serve
visitors on ports 80 and 443. It can also reduce the number of floating IP address that are required
for deployment.

• Failover support: Deployers have the option to deploy a single load balancer node or an ac-
tive/passive pair.

• Load balancers inside guests: The load balancer runs inside virtual machines rather than along-
side other neutron agents.

• Housekeeping: If a load balancer goes offline or haproxy is down, the health manager will remove
the faulty load balancer and build a new one in its place.

• TLS Termination: TLS can be terminated at the load balancer so that individual virtual machines
arent required to encrypt/decrypt traffic.

However, LBaaSv2 does have some limitations:

• Horizon support: Horizon support for LBaaSv2 is planned for Mitaka and work is currently in
progress, but the panels are not yet available at the time of writing of this spec.

• Cannot run alongside v1: It is not possible for both versions of LBaaS to run at the same time, and
there is not a migration path available today for users who want to migrate their v1 load balancers
to v2.

11.18.1 Problem description

Although LBaaSv1 support exists in OpenStack-Ansible already, it is deprecated in Liberty and it is
scheduled for removal in Newton. It also has a limitation of one listening port per load balancer, which
limits a users ability to host an application on more than one port (think HTTP and HTTPS) on a single
load balancer.

LBaaSv2 replaces LBaaSv1 and will be supported by OpenStack developers going forward.

11.18.2 Proposed change

There will be several changes needed to deploy LBaaSv2:

1. Add octavia to existing neutron virtualenv: The octavia project will need to be included with
the neutron virtualenv that is deployed within the neutron-server container.

2. Manage four octavia daemons: Four daemons will need to run in the neutron-server container:
octavia-api, octavia-housekeeping, octavia-worker, and octavia-health-monitor.

3. Deploy octavias configuration file: The /etc/octavia/octavia.conf will need to be de-
ployed and managed.

4. RabbitMQ/MariaDB credentials: Octavia will require its own database, database credentials,
and RabbitMQ credentials.

5. Neutron configuration changes: Changes will be needed in neutron.conf to add the LBaaSv2
service plugin and driver.

6. Update documentation: Deployers would need to know the difference between both load balancer
implementations and how to deploy each. Deployers using LBaaSv1 would also need some advice
on how to handle a change to LBaaSv2 in their OpenStack environments.

11.18. Load Balancers v2 (LBaaSv2 & octavia) 195

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

We could choose to stay with v1 through the Mitaka release, but then we might be forced to remove it for
the Newton release in favor of v2.

Playbook/Role impact

The vast majority of the changes should take place in the neutron role. LBaaSv1 is currently enabled
by adding a service_plugin entry, and the same could be done for LBaaSv2. When the LBaaSv2 ser-
vice_plugin entry is present, the neutron role would ensure that octavia is running and ready to receive
requests.

Upgrade impact

The upgrade impact depends on whether a deployer is currently using LBaaSv1.

If a deployer is already using LBaaSv1, they would need to carefully consider their migration path to v2
since both implementations cannot run concurrently. However, if a deployer is already using v1, they
could upgrade to Liberty or Mitaka without making any adjustments to how they use load balancers.
Upgrading to Newton would require changes since LBaaSv1 is expected to be removed in that release.

If a deployer is not using LBaaSv1 at this time, then they would simply be gaining functionality that they
did not have previously when they upgrade to Liberty, Mitaka, or Newton.

Security impact

There are no sigificant performance impacts within LBaaSv2, but it could allow deployers to deploy
HTTPS websites on the same IP address as their HTTP site.

Octavia also integrates with the Anchor and Barbican projects. Anchor allows users to obtain certificates
from a pre-configured certificate authority (CA) within their OpenStack environment and Barbican can
be used to store private keys for SSL/TLS connections.

Performance impact

LBaaSv2 should scale better than LBaaSv1 since it runs within virtual machines rather than inside the
neutron-agents container with multiple haproxy-agents.

End user impact

If an end user is not currently using LBaaSv1, then they would be gaining a new feature that they could
consume via an API. Horizon panels are planned for Mitaka.

If an end user is currently using LBaaSv1, they would lose load balancer functionality when LBaaSv2 is
deployed until they configure their load balancers within the LBaaSv2 API. Deployers must work closely
with end users to determine the best path forward.

196 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

If a deployer is not currently using LBaaSv1, they could easily enable LBaaSv2 by adding a ser-
vice_plugin within their openstack_user_config.yml for LBaaSv2, just as they do for LBaaSv1
today.

If a deployer is currently using LBaaSv1, they could continue using it without interruption (until the
Newton release). If they choose to move to LBaaSv2, they would need to coordinate the changes with
their end users to avoid lengthy service interruptions.

Developer impact

The LBaaSv2 deployment would be part of the neutron deployment, much like the current deployment
process for LBaaSv1. No additional roles or playbooks are required.

Dependencies

This spec does not depend on any other development work in OpenStack-Ansible.

11.18.3 Implementation

Assignee(s)

Primary assignee:
Major Hayden (IRC: mhayden, LP: rackerhacker)

Other contributors:
None

Work items

See the details in the Proposed Changes section above.

11.18.4 Testing

Tempest testing exists for the LBaaSv2 API but tempest tests for the octavia API are still in progress.

11.18.5 Documentation impact

Some topics are mentioned above in the Proposed Changes section. The following topics must be docu-
mented:

• What is different between LBaaSv1/2?

• What do I do if I already deployed LBaaSv1?

• How do I migrate from v1 to v2?

• How do I deploy/configure LBaaSv2?

• How do I troubleshoot LBaaSv2 issues?

11.18. Load Balancers v2 (LBaaSv2 & octavia) 197

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.18.6 References

Mailing list discussion:

• LBaaSv2 / Octavia support

Software:

• https://github.com/openstack/octavia

• https://github.com/openstack/neutron-lbaas

Documentation:

• LBaaSv2 in Devstack

• Load Balancing as a Service v2.0 - Liberty and Beyond (PDF)

• Networking API v2.0 extensions

11.19 Limit Mysql Config Distribution

date
2015-07-20

tags
mysql, galera

• https://blueprints.launchpad.net/openstack-ansible/+spec/limit-mysql-config-distribution

11.19.1 Problem description

The distribution of the .my.cnf file should be limited to API nodes and the utility container.

11.19.2 Proposed change

• Add a variable to the galera_client role to limit the distribution of the .my.cnf file.

Alternatives

Leave everything the way it is.

Playbook/Role impact

This will change the galera_client and os_* roles to ensure that the .my.cnf files are only distributed to
a limited set of hosts.

198 Chapter 11. Mitaka Specifications

http://lists.openstack.org/pipermail/openstack-dev/2016-January/085022.html
https://github.com/openstack/octavia
https://github.com/openstack/neutron-lbaas
http://docs.openstack.org/developer/devstack/guides/devstack-with-lbaas-v2.html
https://www.openstack.org/assets/Uploads/LBaaS.v2.Liberty.and.Beyond.pdf
http://developer.openstack.org/api-ref-networking-v2-ext.html
https://blueprints.launchpad.net/openstack-ansible/+spec/limit-mysql-config-distribution

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade impact

n/a

Security impact

By limiting the distribution of the .my.cnf file we should be able to improve general system security.

Performance impact

n/a

End user impact

n/a

Deployer impact

n/a

Developer impact

n/a

Dependencies

n/a

11.19.3 Implementation

Assignee(s)

Primary assignee: (unassigned)

Work items

• Add a variable to the galera_client role to disable the task Drop local .my.cnf file

• Change the meta entries where the galera_client roles is used use the new variable where appro-
priate.

11.19. Limit Mysql Config Distribution 199

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.19.4 Testing

This will be tested within every gate check for functionality.

11.19.5 Documentation impact

n/a

11.19.6 References

Bug reference for the change:

• https://bugs.launchpad.net/openstack-ansible/trunk/+bug/1412393

11.20 Modularize configuration files

date
2015-05-08 00:00

tags
config, configuration, modularize, modular

Modularize deployment configuration files to simplify the configuration process.

Blueprint:

https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-config

11.20.1 Problem description

Deployment configuration primarily occurs in a rather monolithic openstack_user_config.yml file.
Although adding documentation to this file eases understanding of the various levels and options, it also
increases the size and apparant complexity, especially for larger deployments. With the addition of swift,
the configuration structure already supports configuration files in the conf.d directory. Splitting the main
monolithic configuration file into smaller files containing similar components helps overall organization,
especially for larger deployments.

11.20.2 Proposed change

Similar to swift, modularize similar sections of configuration files, particularly
openstack_user_config.yml, into the following separate files in the conf.d directory.

• hosts.yml

– Includes configuration for target hosts with simple options. For example, repo_hosts typ-
ically contains only a list of hosts. In comparison, storage_hosts requires significantly
more options and should therefore use a separate file.

– Contains the following levels:

∗ shared-infra_hosts

200 Chapter 11. Mitaka Specifications

https://bugs.launchpad.net/openstack-ansible/trunk/+bug/1412393
https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-config

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

∗ repo_hosts

∗ os-infra_hosts

∗ identity_hosts

∗ network_hosts

∗ compute_hosts

∗ storage-infra_hosts

∗ swift_proxy-hosts

∗ log_hosts

Note: For consistency, consider changing swift_proxy-hosts to swift-proxy_hosts and
swift_hosts to swift-storage_hosts.

• networking.yml

– Includes host networks, IP address blacklist for inventory generator, load balancer options,
and provider networks.

– Contains the following levels:

∗ cidr_networks

∗ used_ips

∗ provider_networks (from global_overrides)

∗ internal_lb_vip_address, external_lb_vip_address, management_bridge,
and tunnel_bridge (from global_overrides)

• cinder_storage_hosts.yml

– Includes configuration for cinder storage target hosts with complex options for backends.

– Contains the following level: * storage_hosts

• swift_storage_hosts.yml

– Includes configuration for swift storage target hosts with complex options.

– Contains the following levels: * swift (from global_overrides) * swift_hosts

Alternatives

Use a different strategy to modularize the configuration files or keep the existing monolithic structure.

11.20. Modularize configuration files 201

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook impact

None.

Upgrade impact

Optionally, modularize configuration files according to this specification before or after upgrading to a
version that supports it.

Security impact

None.

Performance impact

None.

End user impact

None.

Deployer impact

Simplify the configuration process.

Developer impact

Developers should consider the modular configuration when adding or changing configuration items.

Dependencies

None.

11.20.3 Implementation

Assignee(s)

Primary assignee:
<ionosphere80> Sam-I-Am

202 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• As necessary, break existing monolithic configuration files into smaller files that contain groups of
similar items and reside in a .d directory within the configuration file structure.

11.20.4 Testing

• Verify changes do not break gating process. The AIO script for gating can continue to use a mono-
lithic file or modular files with the .aio extension.

11.20.5 Documentation impact

• Change documentation that references monolithic configuration files to reference modular config-
uration files.

11.20.6 References

None.

11.21 Policy Files Distribution to Horizon

date
2015-11-24 15:00

tags
cross-project, cross-role, json, policy, distribution, Horizon

OpenStack Horizon can use policy.json files to filter the actions available on its webinterface. For that,
Horizon consumes the policy.json files of each openstack project (like cinder/nova/glance/), it doesnt
distribute its own.

Therefore, if the deployer wants to have a consistent policy through the apis and the webinterface, the
deployer has to upload its policies to Horizon.

Currently, its not done within openstack-ansible.

https://blueprints.launchpad.net/openstack-ansible/+spec/policy-files-distribution

11.21.1 Problem description

Currently every deployer that needs policy files is doing the same work. Lets try to avoid that in the
future: They create policy files for the openstack project thanks to openstack-ansible but then need to
upload the policy files to Horizon manually with their own role.

This should fix that, and propose a solution to the policy files deployment

11.21. Policy Files Distribution to Horizon 203

https://blueprints.launchpad.net/openstack-ansible/+spec/policy-files-distribution

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.21.2 Proposed change

First, there should be a generic cross-role switch (policy_file_distribution_enabled) defaulted
to False, unless the deployer has set a _policy_overrides for a component. Of course, a deployer can
prevent this policy file distribution by setting it to False.

Then, we should handle the policy distribution in two steps:

1. Download each deployed policy.json file (from the first host of each group) during the
horizon-install playbook into the policy_files_distribution_folder (by default /
etc/openstack_deploy/) on the deploy node.

2. Having the Horizon role could consume these files on the deploy host and upload the json files to
the Horizon nodes. This would require connecting on multiple hosts and will lengthen deployments
time (on the first run, if enabled)

Alternatives

• Not implementing this, and let the deployer do the work himself

• Rely on Horizon distributing its own policy mapping in the future

• Include each projects (i.e. nova,neutron,etc.) default policy file from their git source in the
Horizon role and use the config_template to upload/override the final nova_policy.json,
glance_policy.json,... files on Horizon. This would require us to track OpenStack project
policy changes in both Horizon and the respective project roles.

• Download each project policy.json file from their git source repository (i.e. glance, nova,etc.) to
the deployment node before running the os_horizon role. Then use the config_template to up-
load/override the final json files on Horizon. This would require us to track OpenStack projects
policy files URL changes.

• Last alternative would be to distribute using another mechanism (like memcache/swift/file sync).

Playbook/Role impact

Small changes in playbooks/role.

Upgrade impact

No upgrade impact.

Security impact

None

204 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

Slightly longer deployment time if enabled for the first time. Implementation would redownload if a file
exists, unless explicitly told by a variable: policy_file_distribution_force_refresh.

End user impact

The end-user will not have inconsistent behaviour of having one button that doesnt work because the
policy prevents it in the component api but not in Horizon.

Deployer impact

A few new variables:

• policy_file_distribution_enabled

• policy_file_distribution_force_refresh

• policy_files_distribution_files

NB: Their name could be adapted later (cf. implementation)

Developer impact

Nothing should change.

Dependencies

None.

11.21.3 Implementation

Assignee(s)

None yet

Work items

1. group_var to define auto download

2. playbook edition to download policies

3. role changes to upload json files

11.21. Policy Files Distribution to Horizon 205

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.21.4 Testing

• Does this change impact how gating is done?

No

• Can this change be tested on a per-commit basis?

Yes

• Given the instance size restrictions, as found in OpenStack Infra (8GB Ram, vCPUs <= 8), can the
test be run in a resource constrained environment?

Yes.

• Is this untestable given current limitations (specific hardware / software configurations available)?
If so, are there mitigation plans for this change to be tested within 3rd party testing, gate enhance-
ments, etc?

This change is testable.

• If the service is not OpenStack specific how can we test the change?

Its openstack specific

11.21.5 Documentation impact

Well need to update the documentation to mention how to edit the policies and how to enable the policy
distribution to Horizon.

11.21.6 References

Policy files url:

• Horizon: http://docs.openstack.org/developer/horizon/topics/policy.html#policy-files

• keystone: https://github.com/openstack/keystone/blob/master/etc/policy.json

• Glance: https://github.com/openstack/glance/blob/master/etc/policy.json

• Nova: https://github.com/openstack/nova/blob/master/etc/nova/policy.json

• Neutron: https://github.com/openstack/neutron/blob/master/etc/policy.json

• Cinder: https://github.com/openstack/cinder/blob/master/etc/cinder/policy.json

11.22 Additional Role for Designate Deployment

date
2015-12-08 12:00

tags
designate, openstack-ansible

The purpose of this spec is to add support for the OpenStack Designate program to OpenStack-Ansible.
This would allow the deployment of Designate along with the core OpenStack components using
OpenStack-Ansible.

206 Chapter 11. Mitaka Specifications

http://docs.openstack.org/developer/horizon/topics/policy.html#policy-files
https://github.com/openstack/keystone/blob/master/etc/policy.json
https://github.com/openstack/glance/blob/master/etc/policy.json
https://github.com/openstack/nova/blob/master/etc/nova/policy.json
https://github.com/openstack/neutron/blob/master/etc/policy.json
https://github.com/openstack/cinder/blob/master/etc/cinder/policy.json

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Blueprint - Designate deployment on OpenStack-Ansible:

https://blueprints.launchpad.net/openstack-ansible/+spec/role-designate

11.22.1 Problem description

Presently, while deploying OpenStack using OpenStack-Ansible only the core OpenStack components get
deployed. The deployment of other components (eg: Designate, Trove) on playbooks is not supported
yet and to use other components services, they need to be deployed manually.

11.22.2 Proposed change

The Designate program encompasses a number of projects, but this spec and this proposed series of
changes covers the initial implementation of support for Designate. This will involve adding support for
the Designate server[1] and Designate client[2].

The proposed changes include:

• Creation of an openstack-ansible-designate repository and Ansible role to support the deployment
of Designate.

• Tests to verify the new Ansible role.

Alternatives

None

Playbook/Role impact

Test playbooks will be placed in the openstack-ansible-designate repository for functional testing pur-
poses, with no initially proposed changes to OpenStack-Ansible playbooks.

In the future, once the Designate role is found to be useful and acceptable, a future spec will address the
integration of the Designate role with the main OpenStack-Ansible repository.

Upgrade impact

None

Security impact

None.

11.22. Additional Role for Designate Deployment 207

https://blueprints.launchpad.net/openstack-ansible/+spec/role-designate

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

None.

End user impact

Deployers will be able to deploy Designate and use DNSaaS through OpenStack-Ansible.

Deployer impact

When support for the new Designate role is added to the parent repository, new Designate specific con-
figuration options will be made available. This will provide an optional role for use in the OpenStack-
Ansible toolbox for the deployers.

Developer impact

As this change is self-contained initially, no impact on other developers is expected.

Dependencies

None

11.22.3 Implementation

Assignee(s)

Primary assignee:
Swati Sharma (IRC: Swati)

Other contributors:
None

Work items

1. Ask for the new repository, openstack-ansible-designate, to be created

2. Create the role for Designate support

• Add support for running designate-api, designate-central, designate-pool_manager,
designate-sink, designate-mdns

• Add support for including python-designateclient, which is the operator tool for supporting
Designate.

208 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.22.4 Testing

The usual gate checks can be used for these changes. Also, each individual commit can be functionally
tested individually.

11.22.5 Documentation impact

Adding support to the user guide on how to enable Designate support will be required.

11.22.6 References

• [1] The Designate server: http://git.openstack.org/cgit/openstack/designate/

• [2] The Designate client: http://git.openstack.org/cgit/openstack/python-designateclient/

11.23 Role Ironic

date
2015-10-12 16:30

tags
ansible, ironic

The purpose of this spec is to add support for the OpenStack Ironic program to OpenStack Ansible,
allowing the provisioning of compute nodes to bare metal machines.

https://blueprints.launchpad.net/openstack-ansible/+spec/role-ironic

11.23.1 Problem description

Openstack Ansible currently does not support the provisioning of bare metal compute hosts, but this is
functionality that operators and users are likely to want.

11.23.2 Proposed change

The Ironic program encompasses a number of projects, but this spec and this proposed series of changes
covers the initial implementation of support for Ironic. This will involve adding support for the Ironic
server[1] and Ironic client[2].

Future specs may be raised to cover the addition of ironic-inspector, or to support alternate deployment
mechanisms, or to support different deployment drivers. The specific detail for these will be added in
future specs.

This work will build upon the experiences learnt in developing bifrost[3] (which is a set of ansible play-
books for deploying Ironic standalone, without other OpenStack components).

The changes that are proposed as part of this spec are:

• Creation of an openstack-ansible-ironic repository and ansible role to support the initial implemen-
tation of Ironic. This will allow openstack-ansible to deploy compute nodes to bare metal hosts,

11.23. Role Ironic 209

http://git.openstack.org/cgit/openstack/designate/
http://git.openstack.org/cgit/openstack/python-designateclient/
https://blueprints.launchpad.net/openstack-ansible/+spec/role-ironic

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

via the nova API. Initially, support will be limited to bare metal hosts that support IPMI for power
control, and PXE for boot.

• Tests to verify the new ansible role

Alternatives

None, really. Supporting bare metal hosts in OpenStack is done via using Ironic.

Playbook/Role impact

Test playbooks will be placed in the openstack-ansible-ironic repository for functional testing purposes,
with no initially proposed changes to openstack-ansible playbooks.

In the future, once the ironic role is deemed useful and acceptible, a future spec will address the integra-
tion of the ironic role with the main openstack-ansible repository.

Upgrade impact

None

Security impact

None.

Performance impact

None.

End user impact

Deployers will be able to deploy compute nodes to bare metal hosts.

Deployer impact

Ironic specific configuration options will be added to the new repository. When support for the new Ironic
role is added to the parent repository new config options will be made available, however it is expected
that Ironic support will initially be disabled, requiring that deployers explicitly enable Ironic support, and
to enrol hosts for openstack-ansible to use.

210 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

As this change is self-contained initially, no impact on other developers is expected.

Dependencies

None

11.23.3 Implementation

Assignee(s)

Primary assignee:
Michael Davies - mrda on Launchpad and on IRC

Other contributors:
None

Work items

1. Ask for the new repository, openstack-ansible-ironic, to be created

2. Create the role for ironic support

• Add support for running ironic-api

• Add support for running ironic-conductor

• Add support for including python-ironicclient, which is the operator tool for supporting
Ironic.

• Add configuration to make configuring bare metal deployment easy

3. Add support for enrolling bare metal nodes

4. Add support for configuring Nova to use Ironic. Initially this will be in the form of documentation
until the parent openstack-ansible repository is updated to use openstack-ansible-ironic

11.23.4 Testing

As this is testing deploying to hardware, this is challenging :)

Develop a test playbook to deploy to hardware that can exercise the new role. Develop tests that verify
the roles behaviour independent of actually requiring hardware to test the roles functionality.

11.23. Role Ironic 211

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

11.23.5 Documentation impact

Adding support to the user guide on how to enable Ironic support will be required.

11.23.6 References

• [1] The Ironic server: http://git.openstack.org/cgit/openstack/ironic/

• [2] The Ironic client: http://git.openstack.org/cgit/openstack/python-ironicclient/

• [3] The Bifrost project, standalone Ironic installation: http://git.openstack.org/cgit/openstack/
bifrost

11.24 Additional Role for Zaqar Deployment

date
2016-01-20 11:20

tags
zaqar, openstack-ansible

The purpose of this spec is to add support for the OpenStack Zaqar program to OpenStack-Ansible. This
would allow the deployment of Zaqar along with the core OpenStack components using OpenStack-
Ansible.

Blueprint - Zaqar deployment on OpenStack-Ansible:

https://blueprints.launchpad.net/openstack-ansible/+spec/role-zaqar

11.24.1 Problem description

Presently, while deploying OpenStack using OpenStack-Ansible only the core OpenStack components
get deployed. The deployment of other components (eg: Zaqar) on playbooks is not supported yet and
to use other components services, they need to be deployed manually.

11.24.2 Proposed change

The Zaqar program encompasses a number of projects, but this spec and this proposed series of changes
covers the initial implementation of support for Zaqar. This will involve adding support for the Zaqar
server[1] and Zaqar client[2].

The proposed changes include:

• Creation of an openstack-ansible-zaqar repository and Ansible role to support the deployment of
Zaqar.

• Tests to verify the new Ansible role.

212 Chapter 11. Mitaka Specifications

http://git.openstack.org/cgit/openstack/ironic/
http://git.openstack.org/cgit/openstack/python-ironicclient/
http://git.openstack.org/cgit/openstack/bifrost
http://git.openstack.org/cgit/openstack/bifrost
https://blueprints.launchpad.net/openstack-ansible/+spec/role-zaqar

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

None

Playbook/Role impact

Test playbooks will be placed in the openstack-ansible-zaqar repository for functional testing purposes,
with no initially proposed changes to OpenStack-Ansible playbooks.

In the future, once the Zaqar role is found to be useful and acceptable, a future spec will address the
integration of the Zaqar role with the main OpenStack-Ansible repository.

Upgrade impact

None

Security impact

None.

Performance impact

None.

End user impact

Deployers will be able to deploy Zaqar and use messaging service through OpenStack-Ansible.

Deployer impact

When support for the new Zaqar role is added to the parent repository, new Zaqar specific configuration
options will be made available. This will provide an optional role for use in the OpenStack-Ansible
toolbox for the deployers.

Developer impact

As this change is self-contained initially, no impact on other developers is expected.

11.24. Additional Role for Zaqar Deployment 213

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

None

11.24.3 Implementation

Assignee(s)

Primary assignee:
Fei Long Wang (IRC: flwang)

Other contributors:
None

Work items

1. Ask for the new repository, openstack-ansible-zaqar, to be created

2. Create the role for Zaqar support

• Add support for running zaqar-sever

• Add support for including python-zaqarclient, which is the operator tool for supporting Zaqar.

11.24.4 Testing

The usual gate checks can be used for these changes. Also, each individual commit can be functionally
tested individually.

11.24.5 Documentation impact

Adding support to the user guide on how to enable Zaqar support will be required.

11.24.6 References

• [1] The Zaqar server: http://git.openstack.org/cgit/openstack/zaqar/

• [2] The Zaqar client: http://git.openstack.org/cgit/openstack/python-zaqarclient/

11.25 Security Hardening for Hosts

date
2015-09-10 00:00

tags
security

214 Chapter 11. Mitaka Specifications

http://git.openstack.org/cgit/openstack/zaqar/
http://git.openstack.org/cgit/openstack/python-zaqarclient/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

The goal of this spec is to apply hardening standards to openstack-ansible so that users can build environ-
ments that meet the requirements of various compliance programs, such as the Payment Card Industry
Data Security Standard (PCI-DSS). These changes wont make a particular environment PCI compliant,
but they should bring the environment in compliance with Requirement 2.2 from PCI-DSS. That require-
ment states that deployments must follow an industry-accepted hardening standard.

Blueprint - Security Hardening for OSAD Hosts:

• https://blueprints.launchpad.net/openstack-ansible/+spec/security-hardening

11.25.1 Problem description

Compliance programs, such as PCI-DSS, often have a requirement for using industry-accepted hardening
standards for all deployments. At the moment, deployments done on Ubuntu 14.04 with openstack-
ansible meet many, but not all, security hardening standards that are approved within PCI-DSS.

PCI-DSS 3.1 Requirement 2.2 states that deployments that handle credit card data must be secured with
industry-accepted hardening standards. The test of the requirement is as follows:

2.2 Develop configuration standards for all system components. Assure that these standards
address all known security vulnerabilities and are consistent with industry-accepted system
hardening standards.

The United States Defense Information Systems Agency (DISA) publishes sets of security hardening
guides called Security Technical Implementation Guides (STIGs). Theyre comprehensive and they pro-
vide mechanisms for checking secured systems for compliance with the standards. In addition, they are
in the public domain.

11.25.2 Proposed change

The proposed changes include:

1. Create a new role in a new repo to hold the security tasks

• See Work items below for specifics about the role.

2. Write documentation about the hardening standards applied

• Is this standard already deployed by default in Ubuntu 14.04 or by OSAD already?

• If a standard is applied, what does a deployer gain from it?

• If a standard is skipped, why was it skipped and what does the deployer lose?

3. Submit patches that actually apply those hardening standards

• Start by making a bug for each with a description of what will be changed and why

• Determine whether the patch belongs in openstack-ansible or within a new security-hardening
role that can be pulled into openstack-ansible during deployments

4. Create an automated way to test that the security changes are applied and they dont cause negative
impacts on openstack-ansible deployments

• This could be done via OpenSCAP or via CIS Java-based checker

• Needs to be checked via gate check jobs

5. Make it easy for deployers to import the security hardening role into openstack-ansible

11.25. Security Hardening for Hosts 215

https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://blueprints.launchpad.net/openstack-ansible/+spec/security-hardening
http://iase.disa.mil/stigs/Pages/index.aspx

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Should be easily pulled into an openstack-ansible deployment if a deployer chooses

Here are several examples of security improvements recommended by the RHEL 6 STIG which apply
well to Ubuntu:

• V-38497: The system must not have accounts configured with blank or null passwords.

• V-38476: Vendor-provided cryptographic certificates must be installed to verify the integrity of
system software.

• V-38607: The SSH daemon must be configured to use only the SSHv2 protocol.

• V-38614: The SSH daemon must not allow authentication using an empty password.

• V-38673: The operating system must ensure unauthorized, security-relevant configuration changes
detected are tracked.

• V-38632: The operating system must produce audit records containing sufficient information to
establish what type of events occurred.

Alternatives

No known alternatives.

Playbook/Role impact

Depending on the nature of the change and the usefulness to deployers, the changes may be applied
directly to existing roles in openstack-ansible or they may be applied to security hardening role that is
optionally pulled in during openstack-ansible deployments

Any changes which could affect the performance, stability, or functionality of a production deployment
would be disabled by default and heavily documented. Deployers could then make an educated decision
on whether or not they want that security hardening standard enabled.

Upgrade impact

If security features are added via feature flags and disabled by default, the effect on upgrades would be
very minimal if theyre even noticed at all. All configuration changes should be examined individually to
determine if they will have an impact on upgrades.

Security impact

The entire goal of this spec is to have a positive security impact without becoming an operational burden.

216 Chapter 11. Mitaka Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

Its possible that some security changes could impact the performance of a running OpenStack system.
As noted in Upgrade impact above, these configuration changes would need to be examined individually
to determine the balance between security and performance impacts.

End user impact

End users shouldnt notice the majority of the security changes. They will still interact with API endpoints
and virtual machines as they do today. Theres a chance that some security improvements could impact
an end user, but deployers will have full control of how those improvements are applied.

Deployer impact

Deployers could potentially be able to build OpenStack systems that are more secure by default. However,
if these security features are disabled by default, we need solid documentation that tells users how to
enable these features and what the impact of enabling those features might be.

Deployers would need to explicitly include the security hardening role within their openstack-ansible
deployments.

Developer impact

Developers would need to include the security hardening role within their deployments if they wanted to
test openstack-ansible with additional security enhancements.

Dependencies

This spec has no dependencies.

11.25.3 Implementation

Assignee(s)

Who is leading the writing of the code? Or is this a blueprint where youre throwing it out there to see
who picks it up?

If more than one person is working on the implementation, please designate the primary author and
contact.

Primary assignee:
Major Hayden (LP: rackerhacker, IRC: mhayden)

Other contributors:
Cody Bunch (LP: cody-bunch, IRC: e-vad)

11.25. Security Hardening for Hosts 217

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

The security hardening role should be in a separate repository titled openstack-ansible-security.
Once the role has content and is well-tested against openstack-ansible, it could be added as an optional
dependency within openstack-ansible. Documentation for the new role could be added into the existing
openstack-ansible documentation to make it easier for openstack-ansible users to reference it.

The other work items are in the Proposed change section above in a numbered list. Each configuration
change should come with documentation about the change.

11.25.4 Testing

The usual gate checks can be used for these changes. Also, each individual commit can be tested indi-
vidually.

11.25.5 Documentation impact

Documentation is a critical piece of this spec, and its the first step in the process. It would be helpful to
get the documentation team to weigh in on some of the documentation changes to ensure it makes sense
for deployers.

11.25.6 References

Mailing list thread:

• http://lists.openstack.org/pipermail/openstack-dev/2015-September/074104.html

IRC discussion:

• http://bit.ly/1F1wBgB

DISA STIGs:

• https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

218 Chapter 11. Mitaka Specifications

http://lists.openstack.org/pipermail/openstack-dev/2015-September/074104.html
http://bit.ly/1F1wBgB
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

CHAPTER

TWELVE

LIBERTY SPECIFICATIONS

12.1 Compartmentalize RabbitMQ

date
2015-07-14

tags
rabbitmq

The purpose of this spec is to adjust our current RabbitMQ setup to better use the available system
resources by creating a vhost and user per-consumer service within RabbitMQ.

Include the URL of your launchpad blueprint:

• https://blueprints.launchpad.net/openstack-ansible/+spec/compartmentalize-rabbitmq

12.1.1 Problem description

Presently all services use the single root virtual host within RabbitMQ and while this is OK for small to
mid sized deployments however it would be better to divide services into logical resource groups within
RabbitMQ which will bring with it additional security.

12.1.2 Proposed change

All services that utilize RabbitMQ should have their own virtual host, user, and password.

Overview:

• Each role would use the upstream Ansible RabbitMQ user module to create a new user. The
username will be customizable with a default being the same as the name of the service.

• Each role will use the upstream Ansible RabbitMQ vhost module to create a new virtual host
per service. The vhost will be customizable with a default being the same as the name of the
service.

• A Password entry will be created within the user_secrets.yml file for each RabbitMQ
service user.

• The oslo config section of each service will be updated to use the new vhost name, username,
and password.

219

https://blueprints.launchpad.net/openstack-ansible/+spec/compartmentalize-rabbitmq

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

Leave RabbitMQ the way it is.

Playbook impact

The playbooks will have no impact. The changes being proposed are being done within roles. Ideally
this would be a simple default addition, two new tasks, and a simple change within the oslo_messaging
section in the service configuration files.

Upgrade impact

There will be an upgrade impact as the user will need to add the new secret entries to the user_secrets.
yml file. If this was to be accepted as a backport to kilo this would have to be targeted to a major version.

Security impact

Serpentining the services into different vhosts with different users and passwords should improve secu-
rity. And brings our project more inline with what is described in the OpenStack Messaging Security
documentation.

• http://docs.openstack.org/security-guide/content/messaging-security.html

Performance impact

The separation of service into logical vhosts has been not been reported to have any noticeable perfor-
mance impact.

• http://stackoverflow.com/questions/12518685/ performance-penalty-of-multiple-vhosts-in-
rabbitmq

• http://lists.rabbitmq.com/pipermail/rabbitmq-discuss/2012-September/ 022618.html

End user impact

n/a

Deployer impact

The deployer will need to ensure they have passwords entries set within the user_secrets.yml file.
This should not impact greenfield deployments however it will need to be something covered in an up-
grade.

220 Chapter 12. Liberty Specifications

http://docs.openstack.org/security-guide/content/messaging-security.html
http://stackoverflow.com/questions/12518685/
http://lists.rabbitmq.com/pipermail/rabbitmq-discuss/2012-September/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

n/a

Dependencies

n/a

12.1.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter cloudnull

Work items

• Add new RabbitMQ users for all services.

• Add new RabbitMQ vhosts for all services.

• Update all service configuration files to use the new vhost, user, and password.

12.1.4 Testing

The testing of this change is a convergence test. The gate job will utilize the the changes on every commit.

12.1.5 Documentation impact

Docs will need to be updated in terms of upgrades to add the new variables.

12.1.6 References

n/a

12.2 Allow os_* services to use a venv

date
2015-05-08 00:00

tags
python, venv, deployment

Enable the ability for a role to deploy OpenStack python code inside a venv

Blueprint:
https://blueprints.launchpad.net/openstack-ansible/+spec/enable-venv-support-within-the-roles

12.2. Allow os_* services to use a venv 221

https://launchpad.net/~kevin-carter
https://blueprints.launchpad.net/openstack-ansible/+spec/enable-venv-support-within-the-roles

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.2.1 Problem description

There are two problems that we need to start anticipating:

• Some OpenStack services are running on physical hosts in the root namespace. This creates a
situation where its possible for a service to have conflicting requirements with what is already
on the host installed through the host package manager. In these situation weve found some
instabilities that needed workarounds to ensure there are no stability or usage issues with the
service.

• OpenStack services have started moving toward a non-integrated release which will allow
projects to change their release cycle / cadence which will effect versions of services that we
deploy. Additionally, these projects may choose to use dependencies outside of what is set in
Global requirements.

The use of on metal services, the change in release cycles / cadence, and the likelihood of projects using
requirements that conflict with one another requires more separation between the installed projects which
lends itself to using a virtual environment for installed OpenStack Python code.

12.2.2 Proposed change

• Each os_* role will be modified to support a service running in a virtual environment. This will
mean a few new variables to the defaults per-role to determine where the venv will live, change in
pip package requirements as the virtualenv package will need to be installed first, changes to the
init scripts to support a virtual environment, and a change to the sudoers file to allow the virtual
environment bin path to be saved when executing a rootwrap command.

• The roles will support the option to deploy in a venv or not. This will be disabled false by default.

• The playbooks will have an option within them to enable or disable venv support at run time.

• Each venv will be named and tagged such that its unique as it pertains to the deployment. This
will allow for package upgrade and downgrades on long lived deployements to take place without
manual intervention or messing with the hosts packages which may have been installed as part of
the base kick and using the operating system package manager.

222 Chapter 12. Liberty Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

Leave things unchanged or further pursue re-containerizing services that have been moved to the host. If
we decide to go the route of re-containerizing projects that have been moved to the hosts namespace we
will need to invest in kernel development to fix several issues we encountered which forced the move to
running is_metal in the first place.

Playbook/Role impact

See Proposed change.

Upgrade impact

The use of venvs within an environment will not effect an existing deployment nor have any adverse effects
on upgrades. Upgrading a service that hadnt used venvs in the past will be taken care of automatically
as init scripts, sudoers files, and rootwrap configs will be changed to support the new venv install.

The benefit of running a service in a venv is apparent when dealing with downgrading a package require-
ment. This issue has been seen a few times where an upstream OpenStack project has downgraded a
python package requirement in the middle of a release. In the current deployment system an administra-
tor is required to manually intervene to resolve package downgrade issues. If the system was using a venv
and was tagged based on a given deployment upgrading from one to release to another is as simple as
re-running the role from the new released version. The result will be a new venv created for the service
and the version. This has an upgrade side effect that will allow for Kilo to Liberty upgrades without
having to deal with a epoch wheel build or munging of the wheels repo further simplifying an upgrade
in terms of what will be required by the end user.

Security impact

N/A.

Performance impact

While not directly related to the implementation of this spec it would be possible for us to extend the
virtualenv implementation to allow for building and redistribution of pre-built virtualenvs as a means of
speeding up and maintaining reproducibility within an environment.

End user impact

N/A.

12.2. Allow os_* services to use a venv 223

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

When working within a container access to the service management utilities (nova-manage, cinder-
manager, etc) the deployer or administrator working on an environment will need to sourced/activated
the virtualenv before running the tools. While this is an extra step there are no other changes that will
need to be addressed in the typical deployer workflow.

Developer impact

N/A.

Dependencies

N/A.

12.2.3 Implementation

Assignee(s)

Primary assignee:
<cloudnull> - https://launchpad.net/~kevin-carter

Secondary assignee:
Anyone who wants to help

Work items

• Update all roles to support venvs

• Add a variable to the OSA playbooks to enable venv support within the roles.

12.2.4 Testing

• Testing this will rely on the gate as a convergence test.

• This is implemented in Liberty we can create a simple periodic job in OpenStack infra to test
upgrades. The upgrade testing will report back to the OpenStack QA mailing list and key of their
periodic job queue.

12.2.5 Documentation impact

• Documentation will need to be written to acknowledge the venv based deployment and how de-
ployers are to interact with the management tools as provided by the service.

224 Chapter 12. Liberty Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.2.6 References

Related Bug:

• https://bugs.launchpad.net/openstack-ansible/+bug/1488315

12.3 Liberty Release

date
2015-09-08 08:30

tags
liberty, update

Update the various playbooks and roles in the master branch with the changes necessary to implement a
fully functional and updated Liberty deployment.

• https://blueprints.launchpad.net/openstack-ansible/+spec/liberty-release

Initial work will be based on the Liberty RC tags in each of the OpenStack projects since Liberty is not
yet officially released.

12.3.1 Problem description

While the master branch has been tracking Liberty code for some time, none of the configuration files
have been updated to match the upstream changes in order to handle deprecation, different default values,
etc.

12.3.2 Proposed change

1. Each template/file carried in-tree will need to be reviewed and revised according to the new defaults
and other adjustments in each OpenStack project.

2. Each service will need to be inspected for changes in how deployments and upgrades are handled,
and the role tasks adjusted accordingly.

3. Any other changes to each service will need to be inspected and adjustments to the roles must be
made accordingly.

4. In a final test, fatal_deprecations should be set to True for all the services to validate that all dep-
recated configurations have been removed or replaced.

The approach to dealing with differences (eg changed defaults for a particular setting) will be to use the
Liberty value where possible. Deployers who are upgrading from Kilo may use the config_overrides to
implement overrides for any configurations that they wish to keep at the previous values.

Examples of configs impacted (these will differ depending on the service being worked on):

/etc/<servicename>/<servicename>.conf
/etc/<servicename>/<servicename>-api-paste.ini
/etc/<servicename>/policy.json
/etc/<servicename>/<servicename>-<agentname>.ini

12.3. Liberty Release 225

https://bugs.launchpad.net/openstack-ansible/+bug/1488315
https://blueprints.launchpad.net/openstack-ansible/+spec/liberty-release
https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/configure.html

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

We could, wherever needed, preserve Kilo settings rather than taking forward the Liberty settings. This
is potentially easier on users in an upgrade scenario, but does mean that new users deploying Liberty
would get an already out of date deployment. It also means that we miss an opportunity to implement
best practices deployments, instead sticking on old, less relevant, values.

Playbook impact

There will be no impact on the playbooks. These changes are on the dependency and role level which
only impact the configuration files and role options.

Upgrade impact

This change will impact upgrades, but upgrades are specifically out of scope and will be addressed sep-
arately in https://blueprints.launchpad.net/openstack-ansible/+spec/liberty-upgrade-path

The focus for this spec will be for new deployments only.

Security impact

Security testing and improvements are specifically out of scope. Testing for security changes and im-
provements can be done after the release and implemented in subsequent patches.

Performance impact

Performance testing and improvements are specifically out of scope. Testing for performance changes
and improvements can be done after the release and implemented in subsequent patches.

End user impact

N/A

Deployer impact

Impacts must be noted in the commit messages for each change.

Developer impact

This change is to allow development of a production grade Liberty deployment

226 Chapter 12. Liberty Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/liberty-upgrade-path

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

1. There are several feature blueprints which are expected to merge into the master branch alongside
these changes. These features are to facilitate future improvements in the Mitaka development
timeframe and may be backported to Liberty. The feature blueprints are marked as dependent in
Launchpad.

2. The final release of OpenStack-Ansibles Liberty release is entirely dependent on OpenStacks Lib-
erty release.

12.3.3 Implementation

Assignee(s)

• Ceilometer: https://launchpad.net/~miguel-cantu alextricity

• Cinder: https://launchpad.net/~jesse-pretorius odyssey4me

• Glance: https://launchpad.net/~jesse-pretorius odyssey4me

• Heat: https://launchpad.net/~jesse-pretorius odyssey4me

• Horizon: https://launchpad.net/~steve-lewis stevelle

• Keystone: https://launchpad.net/~jesse-pretorius odyssey4me

• Neutron: https://launchpad.net/~jesse-pretorius odyssey4me

• Nova: https://launchpad.net/~jesse-pretorius odyssey4me

• Swift: https://launchpad.net/~jesse-pretorius odyssey4me

• Tempest: https://launchpad.net/~jesse-pretorius odyssey4me

Work items

See Assignees.

12.3.4 Testing

No changes to the current testing and or gating framework will be made. Each change that is made to
a service to bring forward new configs and settings will be required to pass the same gate tests as are
required by our production systems.

12.3.5 Documentation impact

All changes made will require DocImpact tags in the commit messages in order to track the changes
required for documentation.

12.3. Liberty Release 227

https://launchpad.net/~miguel-cantu
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~steve-lewis
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~jesse-pretorius

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.3.6 References

• https://etherpad.openstack.org/p/liberty-config-changes

12.4 Modularizing Neutron plays for agents and non ml2 plugin
support

date
2015-09-09 18:00

tags
neutron, plugins, agents

This spec is propsed to enhance the current neutron playbooks that take a static approach to plugin and
agent insertion. Where ml2 and a few agents are used by default.

• https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-liberty

12.4.1 Problem Description

Presently a straightforward approach does not exist to add new plugins and add / remove agents to the
neutron setup. A deployer either has to perform these changes after the whole setup is complete or make
their own changes in the playbooks locally. This feature has already been implemented in juno branch.

12.4.2 Proposed Change

The files in playbooks/roles/os_neutron/tasks will be modified, particularly neutron_pre_install.yml
and neutron_post_install.yml. Addition of new parameters will be made to play-
books/roles/os_neutron/defaults/main.yml

Playbook Impact

The following playbooks are expected to be modified to support this feature:

• playbooks/roles/os_neutron/defaults/main.yml

• playbooks/roles/os_neutron/tasks/main.yml

• playbooks/roles/os_neutron/tasks/neutron_pre_install.yml

• playbooks/roles/os_neutron/tasks/neutron_post_install.yml

228 Chapter 12. Liberty Specifications

https://etherpad.openstack.org/p/liberty-config-changes
https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-liberty

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade Impact

None

Alternatives

Using the current architecture, prospective new core plugins which are not ml2 will have to take an
overwriting the default configuration, after its done, approach to insert their own changes.

Security Impact

None known at this time.

Performance Impact

This change is not expected to impact performance. Installing the default set of agents and plugins as
done now, will take the same amount of effort.

End User Impact

This is not expected to impact end users as it deals with the deployment aspect only.

Deployer Impact

This will introduce a more modular architecture for deployers to select neutron plugins/agents from,
allowing a wider use case for the OSAD playbooks.

Developer Impact

Using the default values will require no new developer effort, only those interested in changing the neutron
config will be effected.

Dependencies

N/A

12.4.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~javeria-ak javeriak

12.4. Modularizing Neutron plays for agents and non ml2 plugin support 229

https://launchpad.net/~javeria-ak

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

This change will include modifying the existing os_neutron role to pick up what plugin to install along
with what agents. The names and configs for individual plugins will be created as new variables in
playbooks/roles/os_neutron/defaults/main.yml

Dependencies

N/A

12.4.4 Testing

There are no additional changes required to test this in the current testing and or gating framework.

12.4.5 Documentation Impact

A bit of additional documentation describing how to insert new plugins/agents will be required. This
will be deployer documentation.

12.4.6 References

• https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-plays

12.5 Named veths

date
2015-08-31 22:00

tags
lxc, veth, troubleshooting

This spec aims to make troubleshooting openstack-ansible issues a more efficient process by using con-
tainer names to build names for veth interfaces.

Link to blueprint:

• https://blueprints.launchpad.net/openstack-ansible/+spec/named-veths

12.5.1 Problem description

All veth interfaces on the host are named using randomly generated names, such as vethK070G4. This
can make troubleshooting container networking issues more challenging since its difficult to trace a veth
name to a particular network interface within the container.

230 Chapter 12. Liberty Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-plays
https://blueprints.launchpad.net/openstack-ansible/+spec/named-veths

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.5.2 Proposed change

Names of veth interfaces should be unique and easily correlated to their containers. However, names of
network interfaces have restrictions which must be handled carefully:

• 16 characters maximum

• Certain characters, like dashes (-) arent allowed

The random characters on the end of the container hostname could be used along with the interface name
to form a veth name. As an example, a container called aio1_utility_container-a9ef9551 could have two
named veth interfaces:

• a9ef9551_eth0

• a9ef9551_eth1

Alternatives

Leave veth names as randomly generated by LXC.

Playbook/Role impact

The veth names will only be adjusted on the host within the LXC configuration files themselves. Con-
tainers wont be affected. The playbooks dont use the veth names on the host for any actions.

If veths are not cleaned up properly when a container stops (this is sometimes called dangling veths),
theres a chance that the container wont start until the dangling veth is manually removed with ip link del
<veth>.

Upgrade impact

Upgrades should be unaffected. This change only adjusts the LXC container configuration files and
doesnt change the running configuration of any of the containers.

If a container is running and its LXC configuration file is adjusted to use named veths, it will only utilize
those adjustments when it is restarted. If an upgrade happens to restart only a subset of the containers on
the host, then only those containers will use named veths after they restart.

Security impact

This change shouldnt affect security.

12.5. Named veths 231

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance impact

This change shouldnt affect performance.

End user impact

This change shouldnt affect end users.

Deployer impact

Users who deploy OpenStack should be able to troubleshoot network issues more efficiently.

For example, if a user was having trouble reaching the nova API container, they could quickly see which
veths were associated with the container. This would allow users to diagnose network problems with
various tools, like ethtool and tcpdump, without digging into interface indexes or writing scripts.

If a deployer wants to begin using named veth pairs immediately, then all containers must be restarted.
This is because the LXC configuration files are adjusted on disk but running containers arent adjusted.

Developer impact

Much like the deployer impact above, this change could help developers diagnose issues within different
containers more efficiently.

Dependencies

This spec has no known dependencies.

12.5.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~rackerhacker mhayden

Work items

• Update ansible playbooks to specify lxc.network.veth.pair in the main LXC configuration files as
well as the interface .ini files

232 Chapter 12. Liberty Specifications

https://launchpad.net/~rackerhacker

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.5.4 Testing

• Do greenfield deployment and verify named veths

• Do an upgrade between releases and verify named veths

• Verify that both tests have no impact on running containers

12.5.5 Documentation impact

Documentation would be beneficial, especially around how this helps with troubleshooting issues.

12.5.6 References

N/A

12.6 Add PLUMgrid plugin to neutron playbooks

date
2015-09-09 19:30

tags
neutron, plugins, networking

This spec is propsed to insert the capability of using the PLUMgrid OpenStack Neutron Plugin through
the OSAD neutron playbooks.

• https://blueprints.launchpad.net/openstack-ansible/+spec/plumgrid-support-liberty

12.6.1 Problem Description

PLUMgrid is a core neutron networking plugin that has been a part of OpenStack neutron since Grizzly.
It offers a Network Virtualization Platform that uses direct communication with the Hypervisor layer
to provide all the networking functionality requested through Neutron APIs. The PLUMgrid Neutron
Plugin implements Neutron v2 APIs and helps configure L2/L3 virtual networks created through the
PLUMgrid Platform. It also implements External Networks and Port Binding Extensions.

APIs supported by the PLUMgrid plugin:

• Networks

• Subnets

• Ports

• External Networks

• Routers

• Security Groups

• Quotas

• Port Binding

12.6. Add PLUMgrid plugin to neutron playbooks 233

https://blueprints.launchpad.net/openstack-ansible/+spec/plumgrid-support-liberty

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Provider Networks

12.6.2 Proposed Change

This change is proposed to add the PLUMgrid plugin as a core plugin option alongside ml2, which will
be the default. This configurability should already be achieved by the BP: modularize-neutron-liberty.

The rest of the installation for PLUMgrid that requires PLUMgrid Controller and Compute components,
that enable management of the plugin, is maintained in a public plumgrid-ansible repository.

The changes described below assume the previously mentioned BP modularization changes in place.

This feature is proposed for the master branch leading to liberty. Once implemented it will be backported
to kilo.

The parameters relevant to the PLUMgrid plugin installation will be added to a new dictionary item
in neutron_plugins in playbooks/roles/os_neutron/defaults/main.yml. This will allow setting the neu-
tron_plugin_type to plumgrid if desired.

Playbook Impact

These files are expected to be modified:

• playbooks/roles/os_neutron/defaults/main.yml

New templates will be added in the os_neutron role:

• playbooks/roles/os_neutron/templates/plugins/plumgrid/plumgrid.ini

• playbooks/roles/os_neutron/templates/plugins/plumgrid/plumlib.ini

• playbooks/roles/os_neutron/files/rootwrap.d/plumlib.filters

Upgrade impact

None

Alternatives

To continue using the default ml2 and linuxbridge-agent neutron deployment with no possibility of other
core neutron plugins.

Security Impact

N/A

234 Chapter 12. Liberty Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Performance Impact

This change is not expected to impact performance. A typical PLUMgrid plugin installation, will fur-
thermore disable neutron agent installations. Hence the overall performance is expected to remain the
same.

End User Impact

End users will be able to leverage the enhanced scale and operational capabilities provided by the PLUM-
grid plugin when choosing to install this plugin. Further details can be found in the References section
below.

Deployer Impact

This will provide Deployers with the option to use PLUMgrid as the neutron plugin. Upgrading from a
previous release to use this new feature will only be possible through a re-run of the neutron playbooks
as well. This change does not effect running instances within the cloud.

Developer Impact

This change adds further installable options and as such does not effect the default flow of the playbooks.

Dependencies

None

12.6.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~javeria-ak javeriak

Work items

This change will use the modularized neutron playbooks to provide PLUMgrid as a plugin option. A set
of three new template files will be added to the neutron plays to support plumgrid.

12.6. Add PLUMgrid plugin to neutron playbooks 235

https://launchpad.net/~javeria-ak

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

Dependent on:

• https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-liberty

12.6.4 Testing

There are no additional changes required to test this in the current testing and or gating framework that
also covers the neutron components.

12.6.5 Documentation Impact

Documentation describing how to modify the configuration parameters to install PLUMgrid will be re-
quired. This will be deployer documentation.

12.6.6 References

• https://www.vmware.com/products/nsx.html

• https://wiki.openstack.org/wiki/PLUMgrid-Neutron

• https://github.com/plumgrid/plumgrid-ansible

12.7 Remove upstream repo dependency

date
2015-07-19

tags
repo, repo-servers, repo-clone, pip-wheel

The purpose of this spec is to remove the repo-clone play from OSAD.

• https://blueprints.launchpad.net/openstack-ansible/+spec/Remove-upstream-repo-dependency

12.7.1 Problem description

Presently the repo-clone-mirror play is responsible for cloning the upstream repository that Rackspace
maintains into the repo containers. While this process is simple enough it does bring with it a reliance
on an upstream deployer/vendor. OSAD already has the ability to build its own python packages which
is the process used to do all gate check testing so it should also be the default means to deploy an OSAD
environment.

236 Chapter 12. Liberty Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-liberty
https://www.vmware.com/products/nsx.html
https://wiki.openstack.org/wiki/PLUMgrid-Neutron
https://github.com/plumgrid/plumgrid-ansible
https://blueprints.launchpad.net/openstack-ansible/+spec/Remove-upstream-repo-dependency

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.7.2 Proposed change

• Remove the repo-clone-mirror.yml play

• Change repo-install.yml to use repo-build.yml as its included method.

• Modify the pip install role to remove the install requirement using the upstream mirror.

Alternatives

Leave everything the way it is.

Playbook impact

Changes the repo create process to always build. This will only impact deployers that are using the
repo-servers and will ensure that the system is always building the correct packages.

When bootstrapping a new environment the pip install role is used throughout the stack. This would
modify that role to always pull upstream pip unless otherwise instructed, through the use of user_vars,
to go elsewhere.

Upgrade impact

n/a

Security impact

n/a

Performance impact

Repo clone was intended to be a faster means of delivering packages to the deployment infrastructure
however in testing repo clone and repo build operate at roughly the same speed.

End user impact

n/a

Deployer impact

This change will be unnoticeable to the deployer.

12.7. Remove upstream repo dependency 237

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Developer impact

n/a

Dependencies

n/a

12.7.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter cloudnull

Work items

• Delete the repo-clone-mirror.yml play

• Change the include in repo-install.yml s/repo-clone-mirror.yml/repo-build.yml/

12.7.4 Testing

This is already being tested on every build within upstream OSAD.

12.7.5 Documentation impact

n/a

12.7.6 References

n/a

12.8 HAProxy improvements

date
2015-09-04 14:00

tags
haproxy, production use

HA Proxy can be improved by adding a few changes:

• Making it really HA

• Allowing configuration interface to easily adapt load

• Deploying only the configuration for the services deployed within the inventory.

238 Chapter 12. Liberty Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Improving backends configuration, for example galera or adapting the timer values to be more
efficient

https://blueprints.launchpad.net/openstack-ansible/+spec/role-haproxy-v2

12.8.1 Problem description

There are a few features already asked by the community:

• HA for haproxy

• Enable statistics and improve manageability of haproxy

• Limiting the unnecessary checks of haproxy

12.8.2 Proposed change

• Implement keepalived for haproxy

• Change the standard haproxy role to add administrative tools (admin level on socket and stats)

• Remove the large haproxy variable in vars/ folder

• Give this information component by component (in the group_vars), and make it possible to have
user overrides (user_variables or component by component). Then delegate the configuration to
haproxy hosts.

• Introduce a skip variable, if you want to deploy haproxy on some components but not some others

Alternatives

Wait for ansible2 to have variable merging/cleanup for dicts on a per task/playbook basis.

Playbook/Role impact

The playbook haproxy-install.yml will be completely overwritten.

haproxy playbook run will be longer, due to the delegate to.

Upgrade impact

None.

12.8. HAProxy improvements 239

https://blueprints.launchpad.net/openstack-ansible/+spec/role-haproxy-v2

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

No change

Performance impact

Improved performance by:

• Doing less unnecessary checks to backends

• Adding an easy way to set customer values for the backends timers.

End user impact

No change

Deployer impact

• No change in default configuration

• The deployer can overwrite the haproxy_service_configs per component

Developer impact

No impact at first sight.

Dependencies

None

12.8.3 Implementation

Assignee(s)

None

Work items

• Keepalived: https://review.openstack.org/#/c/217517/

• Easy administration: https://review.openstack.org/#/c/215019/ and https://review.openstack.org/
#/c/214110/

• Default configuration less static:

– rewrite haproxy-install with the delegate_to and with a when haproxy_component_skip (if
you want to deploy haproxy on some components but not some others)

– create a file per component with default variables under group_vars

• Default timer value changes.

240 Chapter 12. Liberty Specifications

https://review.openstack.org/#/c/217517/
https://review.openstack.org/#/c/215019/
https://review.openstack.org/#/c/214110/
https://review.openstack.org/#/c/214110/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.8.4 Testing

• Does this change impact how gating is done?

There will be a change to haproxy-install playbook if merged.

• Can this change be tested on a per-commit basis?

Yes

• Given the instance size restrictions, as found in OpenStack Infra (8GB Ram, vCPUs <= 8), can the
test be run in a resource constrained environment?

No change

• Is this untestable given current limitations (specific hardware / software configurations available)?
If so, are there mitigation plans for this change to be tested within 3rd party testing, gate enhance-
ments, etc?

No

• If the service is not OpenStack specific how can we test the change?

Running the new playbooks

12.8.5 Documentation impact

For those who change the default configuration of haproxy (currently not documented), this change would
modify their current configuration, so it needs to be documented. Explanation of the skip variable and
component by component override should be good to add in the doc too.

12.8.6 References

None

12.9 Tunable OpenStack Configuration

date
2015-08-26

tags
openstack, configuration, tuning

Instead of implementing a specific variable for each possible/desired configuration entry in every role,
there is a more general way that this could be done which would enable the deployer to implement any
desired valid configuration entry for a given role. OpenStack Ansible will then only need to implement
deviations from the standard OpenStack default settings. Examples of these settings would be minimum
settings to make the service work and best practice settings. Changes to templates would allow the project
the ability to ship flat, or otherwise minimally dynamic, configuration files in an effort to limit the sheer
size and scope of the number of variables we have if a given role.

• https://blueprints.launchpad.net/openstack-ansible/+spec/ tunable-openstack-configuration

This implementation is intended to:

12.9. Tunable OpenStack Configuration 241

https://blueprints.launchpad.net/openstack-ansible/+spec/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• Reduce the cruft of variables the project needs to carry just to enable customizations requested
from deployers.

• Reduce the amount of configuration file settings the project needs to work through for every major
upgrade of the underlying OpenStack environment.

• Decrease the turnaround time for deployers to implement additional configuration items in Open-
Stack configuration files.

12.9.1 Problem description

The OpenStack Ansible project currently carries a lot of variables in roles which are simply there to enable
the ability to override OpenStack default settings. This is unnecessary cruft which has to be reviewed for
deprecated options whenever the project starts working with an updated version of OpenStack.

It also introduces an unnecessary propose/develop/test/release cycle for simple changes to configuration
files which could easily be done by a deployer if theyre enabled to do so.

12.9.2 Proposed change

• A new Ansible action plugin will be created which will facilitate the ability for templates to be
updated dynamically. This change will build off of the existing Ansible template functionality
and but allow for changes to be applied through a simple dictionary data structure. Updates are
applied to the template while in transit allowing us to carry minimal code while leveraging all of
the already built in Ansible functionality.

• The action plugin named config_template will add two new input types config_data and con-
fig_type. The new input options will be optional allowing us to simply replace our current template
tasks with the config_template module.

• New defaults will be created as empty dictionaries as base entry points for deployers to override
items in config.

Code wise the change to a templed task will look something this:

- name: run config template ini
config_template:
src: templates/test.ini.j2
dest: /tmp/test.ini
config_data: {'data': 'things'}
config_type: ini

- name: run config template json
config_template:
src: templates/test.json.j2
dest: /tmp/test.json
config_data: {'data': 'things'}
config_type: json

- name: run config template yaml
config_template:
src: templates/test.yaml.j2

(continues on next page)

242 Chapter 12. Liberty Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

(continued from previous page)

dest: /tmp/test.yaml
config_data: {'data': 'things'}
config_type: yaml

To note:
A dictionary used to update or override items within a configuration template. The dictionary data
structure may be nested. If the target config file is an ini file the nested keys in the config_data
will be used as section headers.

Alternatives

Continue to use the current paradigm of adding an ansible variable per configuration configurable file
entry.

Playbook impact

The existing roles would need to be adjusted to support the new config_data entry point and to have the
relevant template tasks updated to the config_template module.

Upgrade impact

This change will not impact current upgrades as everything in all of the templates can remain the same.
The proposed module changes simply make it possible for deployers to update templates as needed with-
out having to make changes in tree. In future releases we can deprecate variables were presently carrying
as needed or wanted while still maintaining the ability to override options as needed through the use of
the config_template module.

Security impact

None.

Performance impact

None.

End user impact

None

12.9. Tunable OpenStack Configuration 243

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

Deployers will be able to dynamically update configuration options based on their need without making
changes in tree. This will allow deployers a greater ability to tailor deployments as needed.

Developer impact

This would reduce the need for developers to get involved with small patches that implement basic con-
figuration file entries which deployers wish to use.

Dependencies

None.

12.9.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter IRC: cloudnull

Other contributors:
None at this time.

Work items

Implement tunable configurations for all configuration files that fall under the following formats: [yaml,
json, ini]

• Develop Ansible Action Plugin to enable the ability to make in flight config changes to an existing
template.

• Change all template tasks within the roles that drop configuration files to use the new con-
fig_template module.

• Replace the copy_update module with the config_template module.

12.9.4 Testing

In the current gate testing we can add a basic template test to override a few options / add a few options
and assert that the changes from the base template took place. This can be accomplished using items
from the example tasks and a simple json, ini, and yaml data structure. We could also set overrides with
the gate that we know we want to run within our deployments such that were exercising the OpenStack
code paths that were attempting to enable via the gate. In this way we might be able to cut out some of
our gate script variables as well.

244 Chapter 12. Liberty Specifications

https://launchpad.net/~kevin-carter

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

12.9.5 Documentation impact

While the Action Plugin has documentation within it, per the normal Ansible module documentation
process, we can also update our general install documentation to reference the existence of the new mod-
ule and how it works. Id like to refrain from documenting every override entry point as the authoritative
source for those types of items will be the role defaults themselves.

12.9.6 References

None

12.10 MariaDB upgrade to v10

date
2015-07-19

tags
mysql, galera

The purpose of this spec is to upgrade MariaDB from v5.5 to v10.0

https://blueprints.launchpad.net/openstack-ansible/+spec/MariaDB-upgrade-to-v10

12.10.1 Problem description

MariaDB + Galera is presently using v5.5 which is old and should be upgraded. Additionally, we are
using xtrabackup v1 which was deprecated in favor of xtrabackup v2 as such that should be changed as
we upgrade to v10 so that we can take advantage of the performance and security enhancement available
in the new releases.

12.10.2 Proposed change

• Upgrade MariaDB - this is a package change as well as upstream mariadb repo change

• Change xtrabackup to xtrabackup-v2 - This will add a configuration section in the default my.cnf
for the xtrabackup client(s).

Alternatives

Leave everything the way it is.

12.10. MariaDB upgrade to v10 245

https://blueprints.launchpad.net/openstack-ansible/+spec/MariaDB-upgrade-to-v10

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook/Role impact

There will be no playbook impact however the The galera_server and galera_client roles will change to
support the new packages for xtrabackup-v2 and mariadb+galera v10.

Upgrade impact

n/a

Security impact

Upgrading to MariaDB v10 w/ xtrabackup v2 will result OSAD being able to take advantage of better
security options in the future if we so choose.

Performance impact

Upgrading to MariaDB v10 w/ xtrabackup v2 will result in greater performance.

End user impact

n/a

Deployer impact

The deployer will need to be aware that mariadb v5.5 is being upgraded however all of the post upgrade
processes should be handled automatically.

Developer impact

n/a

Dependencies

• SPEC/Limit the distribution of .my.cnf - https://review.openstack.org/#/c/203754/

12.10.3 Implementation

Assignee(s)

Primary assignee: (unassigned)

246 Chapter 12. Liberty Specifications

https://review.openstack.org/#/c/203754/

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

• Change the package for MariaDB10 w/ Galera

• Add repo for new versions of XtraBackup

• Update the my.cnf for use with MariaDB10 (revise it for anything that may need to be removed)

• Update the cluster.cnf for use with MariaDB10 (revise it for anything that may need to be removed)

12.10.4 Testing

The testing for this change will be automatic in upstream as everybuild will change to using this by
default.

12.10.5 Documentation impact

n/a

12.10.6 References

n/a

12.10. MariaDB upgrade to v10 247

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

248 Chapter 12. Liberty Specifications

CHAPTER

THIRTEEN

KILO SPECIFICATIONS

13.1 Add PLUMgrid plugin to neutron playbooks

date
2015-06-2 14:30

tags
neutron, plugins, networking

This spec is propsed to insert the capability of using the PLUMgrid OpenStack Neutron Plugin through
the os-ansible neutron playbooks.

• https://blueprints.launchpad.net/openstack-ansible/+spec/add-plumgrid-neutron-plugin

13.1.1 Problem Description

PLUMgrid is a core neutron networking plugin that has been a part of OpenStack neutron since Grizzly.
It offers a Network Virtualization Platform that uses direct communication with the Hypervisor layer
to provide all the networking functionality requested through Neutron APIs. The PLUMgrid Neutron
Plugin implements Neutron v2 APIs and helps configure L2/L3 virtual networks created through the
PLUMgrid Platform. It also implements External Networks and Port Binding Extensions.

APIs supported by the PLUMgrid plugin:

• Networks

• Subnets

• Ports

• External Networks

• Routers

• Security Groups

• Quotas

• Port Binding

• Provider Networks

249

https://blueprints.launchpad.net/openstack-ansible/+spec/add-plumgrid-neutron-plugin

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.1.2 Proposed Change

This change is proposed to add the PLUMgrid plugin as a core plugin option alongside ml2, which will
be the default. This configurability should already be achieved by the BP: modularize-neutron-plays.

The rest of the installation for PLUMgrid that requires PLUMgrid Controller and Compute components,
that enable management of the plugin, will be added externally through Ansible Galaxy roles.

The changes described below assume the previously mentioned BP modularization changes in place.

This feature is proposed for both kilo and juno branches, the juno change will be carried out first:

1. For juno, parameters relevant to the PLUMgrid plugin, namely the plumgrid core plugin and plu-
gin config file, plumgrid.ini will be added to a new dictionary item in neutron_plugins in inven-
tory/group_vars/neutron_all.yml This will allow setting the neutron_plugin_type = plumgrid if
desired.

2. For kilo, parameters relevant to the PLUMgrid plugin will be added to a new dictionary item
in neutron_plugins in playbooks/roles/os_neutron/defaults/main.yml. This will allow setting the
neutron_plugin_type to plumgrid if desired.

Playbook Impact

1. In juno, the following files are expected to be modified:

• rpc_deployment/playbooks/openstack/inventory/group_vars/neutron_all.yml

The following templates will be created in neutron-common role:

• rpc_deployment/roles/neutron_common/templates/plugins/plumgrid/plumgrid.ini

• rpc_deployment/roles/neutron_common/templates/plugins/plumgrid/plumlib.ini

• rpc_deployment/roles/neutron_common/templates/rootwrap.d/plumlib.filters

2. In kilo, these files are expected to be modified:

• playbooks/roles/os_neutron/defaults/main.yml

New templates will be added in the os_neutron role:

• playbooks/roles/os_neutron/templates/plugins/plumgrid/plumgrid.ini

• playbooks/roles/os_neutron/templates/plugins/plumgrid/plumlib.ini

• playbooks/roles/os_neutron/files/rootwrap.d/plumlib.filters

Upgrade impact

None

250 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

To continue using the default ml2 and linuxbridge-agent neutron deployment with no possibility of other
core neutron plugins.

Security Impact

N/A

Performance Impact

This change is not expected to impact performance. A typical PLUMgrid plugin installation, will fur-
thermore disable neutron agent installations. Hence the overall performance is expected to remain the
same.

End User Impact

End users will be able to leverage the enhanced scale and operational capabilities provided by the PLUM-
grid plugin when choosing to install this plugin. Further details can be found in the References section
below.

Deployer Impact

This will provide Deployers with the option to use PLUMgrid as the neutron plugin. Upgrading from a
previous release to use this new feature will only be possible through a re-run of the neutron playbooks
as well. This change does not effect running instances within the cloud.

Developer Impact

This change adds further installable options and as such does not effect the default flow of the playbooks.

Dependencies

None

13.1.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~javeria-ak

13.1. Add PLUMgrid plugin to neutron playbooks 251

https://launchpad.net/~javeria-ak

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

This change will use the modularized neutron playbooks to provide PLUMgrid as a plugin option. A set
of three new template files will be added to the neutron plays to support plumgrid.

Dependencies

Dependent on:

• https://review.openstack.org/184665

• https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-plays

13.1.4 Testing

There are no additional changes required to test this in the current testing and or gating framework that
also covers the neutron components.

13.1.5 Documentation Impact

Documentation describing how to modify the configuration parameters to install PLUMgrid will be re-
quired. This will be deployer documentation.

13.1.6 References

• http://www.plumgrid.com/

• https://wiki.openstack.org/wiki/PLUMgrid-Neutron

13.2 Ceph Block Devices

date
2015-07-23 12:00

tags
storage, ceph

This spec is a proposal to add the ability to configure cinder, glance, and nova running in an openstack-
ansible installation to use an existing Ceph cluster for the creation of volumes, images, and instances
using Ceph block devices.

• https://blueprints.launchpad.net/openstack-ansible/+spec/ceph-block-devices

252 Chapter 13. Kilo Specifications

https://review.openstack.org/184665
https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-plays
http://www.plumgrid.com/
https://wiki.openstack.org/wiki/PLUMgrid-Neutron
https://blueprints.launchpad.net/openstack-ansible/+spec/ceph-block-devices

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.2.1 Problem description

This implementation should meet the following user requirements:

• Cinder Volume Creation: As a User I want to be able to allocate block storage volumes from the
Ceph Storage Cluster to individual virtual machines.

• Cinder Boot from Volume: As a User I want to be able to create a virtual machine that boots from
a block storage device hosted on the Ceph Storage Cluster.

• Cinder Snapshots: As a User I want to be able to create a snapshot of one or more Cinder Volumes.

• Cinder Backups: As a User I want to be able to use the Ceph Storage Cluster as a target for cinder
backups.

• Glance Storage: As a User I want to be able to use the Ceph Storage Cluster as a backend for
glance.

• Nova Ephemeral Storage: As a User I want to be able to allocate nova instance storage from the
Ceph Storage Cluster.

• Live Migration Support: As an Admin I want to be able to live migrate virtual machines that
depend upon (i.e. boots from/mounts) a block storage device hosted on the Ceph Storage Cluster.
This is inclusive of both Boot from Volume and Nova ephemeral storage.

13.2.2 Proposed change

1. Create ceph_client role to handle installation of ceph packages and and configuration of ceph.conf
file.

2. Update os_cinder role to conditionally allow cinder-volume to create volumes in Ceph by setting
volume_driver to cinder.volume.drivers.rbd.RBDDriver.

3. Update os_nova role to conditionally allow nova to boot from cinder volumes stored in Ceph.

4. Update os_cinder role to conditionally allow cinder-backup to store backups in Ceph by setting
backup_driver to cinder.backup.drivers.ceph.

5. Update os_glance role to conditionally allow glance to store images in Ceph by setting default_store
to rbd.

6. Update os_nova role to conditionally allow nova to boot virtual machines directly into Ceph by
setting libvirt_images_type to rbd.

Alternatives

None

13.2. Ceph Block Devices 253

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Playbook impact

See Proposed change above.

Upgrade impact

No default configurations should be altered with the introduction of these changes, and therefore there
should be no impact to the upgrade of an existing installation.

Security impact

OpenStack services require users and keys to interface with Ceph. This implementation should encourage
the use of separate Ceph users for each OpenStack service and ensure that configuration files and keys
can only be read by the intended users.

Performance impact

Enabling this functionality may result in performance increases or decreases across the OpenStack in-
stallation. This will highly depend on the hardware and software configuration of the attached Ceph
cluster.

End user impact

Using Ceph block devices may introduce new features visible to the end user, such as the ability to live
migrate an instance from one hypervisor to another. Additionally, as stated above, there may be visible
performance increases or decreases depending on several different facters.

Deployer impact

A deployer will need to explicitly update their inventory and set Ansible variable overrides to a) enable
this functionality and b) correctly interface with an existing Ceph cluster.

Developer impact

None

Dependencies

None known

254 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.2.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~mattt416 (mattt)

Other contributors:
https://launchpad.net/~git-harry (git-harry) https://launchpad.net/~david-wilde-rackspace
(d34dh0r53)

Work items

1. Create ceph_client role.

2. Update os_cinder role to conditionally allow cinder-volume to create volumes in Ceph.

3. Update os_nova role to conditionally allow nova to attach cinder volumes stored in Ceph.

4. Update os_cinder role to conditionally allow cinder-backup to store backups in Ceph.

5. Update os_glance role to conditionally allow glance to store images in Ceph.

6. Update os_nova role to conditionally allow nova to boot virtual machines directly into Ceph.

13.2.4 Testing

No gate-related adjustments will be made to openstack-ansible to support this change as no default con-
figurations are being changed here. Additionally, that there are strict limitations on what can run in the
all-in-one (AIO) gate instance.

13.2.5 Documentation impact

Documentation will need updating to include:

1. How to enable Ceph block devices for each cinder, glance, and nova services and what each newly
introduced Ansible variable does.

2. What additional steps are required to be executed on the existing Ceph cluster to allow the Open-
Stack installation to interface with the Ceph cluster.

13.2.6 References

None

13.2. Ceph Block Devices 255

https://launchpad.net/~mattt416
https://launchpad.net/~git-harry
https://launchpad.net/~david-wilde-rackspace

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.3 openstack-ansible overview documentation

date
2015-04-13 13:00

tags
documentation, docs, developer

Currently, the openstack-ansible repository does not have any cohesive developer documentation. This
proposal aims to begin such documentation, providing a overview and reference for new contributors.

Documentation covered in this proposal is not intended to be exhaustive.

Also, documentation is a constantly shifting thing - this proposal is just intended to get the initial doc-
uments created; documentation maintenance falls outside of scope. Reviewers should help make sure
patches adequately update associated documentation.

A blueprint for this proposal can be found at:

https://blueprints.launchpad.net/openstack-ansible/+spec/developer-docs

13.3.1 Problem description

Currently, when new contributors come to the repository, there isnt much to help them to understand the
general structure of the project. Currently, there is the development-stack.rst file, which provides a very
brief introduction to getting an all-in-one (AIO) install started, as well as tearing down an environment,
but theres not much else. This can be intimidating for newcomers, as well as current contributors who
might forget details of some portion of the large code base.

13.3.2 Proposed change

This proposal recommends making a new docs repo, which would contain Sphinx documentation on the
following documentation:

• Overview of doing deployments using openstack-ansible

• Variable files, for knowing which variable files are used where in the process.

• Scripts. This section will cover using bootstrap, gating, and teardown scripts. It might also docu-
ment some of the important variables/parameters for these scripts. The openstack-ansible wrapper
would be nice to cover here and in the extending section.

• Playbooks should document the high-level playbooks that prepare physical hosts, create containers,
and install OpenStack.

• Repository role/playbook. Since the repository is fairly unique to openstack-ansible, this should
be probably be a bit more detailed than the rest of the of the documentation. The open-
stack_services.yml and openstack_other.yml files are of particular interest here.

• Inventory management. This section should discuss the dynamic_inventory.py file and the inven-
tory_management.py files.

• Extending openstack-ansible. This would cover using the conf.d and env.d directories, as well as
user_extras.yml files. Changes to ansible.cfg necessary might be useful, too.

256 Chapter 13. Kilo Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/developer-docs

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Also, the docs directory should be built by Sphinx on a regular basis, preferably at the gate.

Some topics are explicitly out of scope for this changes. In particular:

• Host networking setup. This is highly individualized per environment, and too broad to cover here.

• Individual roles. The individual roles should not be documented as part of this. There are too many
roles and too many changes to be able to keep up with those changes at the openstack-ansible level.

• End user documentation. For this specification, the end user is a deployer or user of the deployed
OpenStack system. The installation guide, operations guide, and user/admin guides are all out of
scope.

Alternatives

We could not do this documentation, leaving the repository as is.

Playbook impact

There should be no impact on the playbooks; this change only adds files outside of the playbooks.

Upgrade impact

This documentation will have to be kept up-to-date with releases. Since documentation is an on-going
process, it falls to reviewers to enforce documentation updates to playbook changes.

Security impact

Since this change is not to the playbooks or scripts, it should have no security impact.

Performance impact

This will not have a production performance impact. I do propose adding a docs build job to the gating
process, which would extend gating job times by some unknown amount.

End user impact

Users of a deployed cloud would likely never see this change. Its largely targeted at developers of this
project or deployers.

13.3. openstack-ansible overview documentation 257

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

There should be little to no deployer impact. This documentation will be for developers, mostly, but
deployers may be able to use it as reference for running scripts and tools on their deployment.

Developer impact

This documentation will be targeted mostly at developers in the hope that it will be easier for new con-
tributors to understand how the project works and where to start. This can also be useful as a reference
for existing developers.

The Sphinx build process may add some overhead, since developers should build the documentation
before pushing their changes.

Where this proposal differs from the CONTRIBUTING.txt is the focus - CONTRIBUTING.txt is largely
about the process around getting changes into the codebase. In contrast, the docs directory should cover
technical information about how to use the repository.

Dependencies

This change does not depend on any other blueprints or specs. It can be done largely in parallel with
other projects and issues.

13.3.3 Implementation

As described earlier, this will be implemented with ReST files in a docs directory at the root of the repo.
Also, there will be a dependency on Sphinx in the dev-requirements, and a script added to run the Sphinx
docs build job a tthe gate.

Assignee(s)

Other contributors are welcome to work on the mentioned sections.

Primary assignee:
nolan-brubaker palendae

Other contributors:
<launchpad-id or None>

Work items

• Add the docs directory and some basic structure files, like an index page and a Sphinx configuration
file.

• Add a file for each section to the docs directory, as well as to the index page.

• Add a Sphinx build job to the gating scripts that only runs if there was a change to the docs directory.

258 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.3.4 Testing

This change will add a Sphinx build job to the gating process. The Sphinx build job should not run on
changes that have no affected docs files.

The Sphinx documentation build job should succeed for the change to merge.

13.3.5 Documentation impact

As mentioned above, this will create a new docs repo that the docs team can then build more detailed
documentation in reference to.

13.3.6 References

N/A

13.4 Implement Ceilometer

date
2015-03-31 10:30

tags
kilo, ceilometer

This blueprint was created to add the Celiometer project to OSAD. It will lay out a possible solution that
will hopefully in turn create discussion around how to properly implement ceilometer as an OPTIONAL
component of OSAD.

• https://blueprints.launchpad.net/openstack-ansible/+spec/implement-ceilometer

13.4.1 Problem description

Currently, OSAD does not implement Ceilometer for various reasons. One being the unstable nature
of the project in production environments - causing ever growing database tables resulting in extremely
slow API quries. However, some may still want to deploy Ceilometer and may prefer to deal with the
problem internally.

Furthermore, these issues should not discount the credibility of Ceilometer as an OpenStack project, and
as such, it should be implemented into OSAD.

13.4.2 Proposed change

An additional role, os_ceilometer, would need to be added to handle the installation/configuration of the
ceilometer services. Also, additional configuration directives would need to be added to other projects
(such as cinder, nova, glance, etc..) so that they will generate notifications.

For the database, the /etc/openstack_deploy/conf.d/ceilometer.yml should give the user an option as to
which database they want to connect to. This BP does not implement the deployment of an additional
database for Ceilometer, but can be discussed as a potential addition.

13.4. Implement Ceilometer 259

https://blueprints.launchpad.net/openstack-ansible/+spec/implement-ceilometer

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Furthermore, new host groups will be added to the env.d/ceilometer.yml file so that the user may specify
which infra nodes to install the central agents on , and which compute nodes to install the compute agent
on. The proposed changes to the this file will look something like:

component_skel:
ceilometer_agent_compute:
belongs_to:
- ceilometer_all

ceilometer_agent_central:
belongs_to:
- ceilometer_all

ceilometer_agent_notification:
belongs_to:
- ceilometer_all

ceilometer_collector:
belongs_to:
- ceilometer_all

ceilometer_alarm_evaluator:
belongs_to:
- ceilometer_all

ceilometer_alarm_notifier:
belongs_to:
- ceilometer_all

ceilometer_api:
belongs_to:
- ceilometer_all

container_skel:
ceilometer_api_container:
belongs_to:
- metering-infra_containers

contains:
- ceilometer_agent_central
- ceilometer_agent_notification
- ceilometer_collector
- ceilometer_alarm_evaluator
- ceilometer_alarm_notifier
- ceilometer_api

properties:
service_name: ceilometer
container_release: trusty

metering-compute_container:
belongs_to:
- metering-compute_containers
contains:
- ceilometer_agent_compute
properties:
service_name: ceilometer
container_release: trusty
is_metal: true

(continues on next page)

260 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

(continued from previous page)

physical_skel:
metering-compute_containers:
belongs_to:
- all_containers

metering-compute_hosts:
belongs_to:
- hosts

metering-infra_containers:
belongs_to:
- all_containers

metering-infra_hosts:
belongs_to:
- hosts

Notable changes:

• New ceilometer role

• New ceilometer playbooks

• A openstack_user_config.yml file in the openstack_deploy/conf.d/ directory specifically for
ceilometer configurations.

• Added vars in appropriate files

• Haproxy config changes for ceilometer apis.

Alternatives

Dont do it.

Playbook impact

The ceilometer component should be OPTIONAL. And thus have no effect on other playbooks when
chosen not to be run. However, when chosen to be run, other configurations across different projects can
be changed to allow notifications.

Upgrade impact

None known

13.4. Implement Ceilometer 261

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

Credentials for the Ceilometer database may need to be specified by the user, as this BP does not imple-
ment the deployment of the Ceilometer database at this moment.

Performance impact

When ceilometer is enabled, the horizon dashboard can potentially slow down due to large API responses
from ceilometer. This is related to the problem stated in the Problem Description. We must let the user
know about this known problem, and advise the ceilometer database be properly supervised. When
ceilometer is disabled, it should have no performance impact.

End user impact

The user will now have the option to enable ceilometer on their private cloud.

Deployer impact

Additional configs must be specified in /etc/openstack_deploy/conf.d/ceilometer.yml only if the deployer
wants ceilometer to be enabled.

The deployer needs to be aware of the database that is going to be used for ceilometer.

Developer impact

A new role will be created to handle the installation/configuration of ceilometer. This role will be run
explicitly by the deployer.

Dependencies

N/A

13.4.3 Implementation

Assignee(s)

Primary Assignee(s)

Miguel Alejandro Cantu Sudarshan Acharya

262 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Other contributors:

Work items

At the very least, the following need to get done:

• New ceilometer role

• New ceilometer playbooks

• A openstack_user_config.yml file in the openstack_deploy/conf.d/ directory specifically for
ceilometer configurations.

• Added vars in the appropriate sections.

• Haproxy config changes for ceilometer apis.

The following files need to be modified:

• etc/openstack_deploy/env.d/openstack_environment.yml

• etc/openstack_deploy/user_secrets.yml

• etc/openstack_deploy/user_variables.yml

• playbooks/inventory/group_vars/all.yml

• playbooks/vars/configs/haproxy_config.yml

• playbooks/vars/repo_packages/openstack_services.yml

• playbooks/roles/os_cinder/defaults/main.yml

• playbooks/roles/os_cinder/templates/cinder.conf.j2

• playbooks/roles/os_glance/defaults/main.yml

• playbooks/roles/os_glance/templates/glance-api.conf.j2

• playbooks/roles/os_glance/tempaltes/glance-registry.conf.j2

• playbooks/roles/os_heat/defaults/main.yml

• playbooks/roles/os_heat/templates/heat.conf.j2

• playbooks/roles/os_nova/defaults/main.yml

• playbooks/roles/os_nova/templates/nova.conf.j2

• playbooks/roles/os_swift/defaults/main.yml

• playbooks/roles/os_swift/tasks/swift_service_setup.yml

• playbooks/roles/os_swift/templates/proxy-server.conf.j2

The following files need to added:

• etc/openstack/deploy/conf.d/ceilometer.yml.example

• playbooks/os-ceilometer-install.yml

• playbooks/roles/os_ceilometer/

– CONTRIBUTING.rst

– LICENSE

13.4. Implement Ceilometer 263

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

– README.rst

– defaults/

∗ main.yml

– handlers/

∗ main.yml

– meta/

∗ main.yml

– templates/

∗ ceilometer.conf.j2

∗ api_paste.ini.j2

∗ ceilometer-upstart-init.j2

∗ event_definitions.yaml.j2

∗ event_pipeline.yaml.j2

∗ pipeline.yaml.j2

∗ sudoers.j2

– tasks/

∗ main.yml

∗ ceilometer_install.yml

∗ ceilometer_pre_install.yml

∗ ceilometer_post_install.yml

∗ ceilometer_service_setup.yml

∗ ceilometer_service_add.yml

∗ ceilometer_upstart_common_init.yml

∗ ceilometer_upstart_init.yml

13.4.4 Testing

The gate scripts will need to be modified with the ceilometer configurations turned on. A variable of
the like of DEPLOY_CEILOMETER will be added with the appropriate conditionals in place to deploy
ceilometer with a mongodb server for testing.

The playbooks will point to a mongodb server deployed on the AIO. A gate script will be created to
deploy a simple mongodb server on the AIO using an ansible galaxy role.

264 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.4.5 Documentation impact

Thorough documentation will need to be created explaining how to enable ceilometer.

13.4.6 References

• http://goo.gl/LA7o6N

• http://goo.gl/Xj7cqT

• https://www.rdoproject.org/CeilometerQuickStart

• http://docs.openstack.org/developer/ceilometer/install/manual.html

13.5 Keystone Federation

date
2015-06-22 08:00

tags
federation, scalability

This spec is to propose adding support for Keystone federation to openstack-ansible.

Launchpad blueprint: https://blueprints.launchpad.net/openstack-ansible/+spec/keystone-federation

Operators of private clouds often have the need for additional capacity or services found in other private
and public clouds. OpenStack has accommodated this use case through Keystone Identity Federation,
allowing identity credentials from one cloud to act as authorization in another.

The primary use case would be for a private cloud to act as an Identity Provider (IdP) to other clouds,
typically Public Clouds. This allows users found in the private cloud databases to authenticate in order
to consume resources provided by other Service Provider (SP) clouds.

The secondary use case is where a private clouds would work as a SP to another Private Cloud or external
provider acting in the role of an IdP.

13.5.1 Problem description

• As a User, in order to utilize my Keystone identity to consume resources in other Keystone backed
Service Providers, I should be able to effectively authenticate with those Service Providers using
only my Keystone identity credentials via the Service Providers Command Line Interface (CLI).

• As an Administrator, in order to allow my users to utilize their Keystone identity with other Service
Providers, I should be able to establish a trust relationship between my Keystone and a Service
Provider Keystone via CLI.

• As an Administrator of multiple clouds, in order to provide identity federation between my multiple
clouds, I should be able to establish a trust relationship between my Keystone Identity Provider
Cloud and my Keystone Service Provider clouds.

• As an Administrator, in order to effectively map Identity Provider groups and users to Service
Provider roles, I should be able to simply define mappings to Service Provider projects, domains
and roles for given groups.

13.5. Keystone Federation 265

http://goo.gl/LA7o6N
http://goo.gl/Xj7cqT
https://www.rdoproject.org/CeilometerQuickStart
http://docs.openstack.org/developer/ceilometer/install/manual.html
https://blueprints.launchpad.net/openstack-ansible/+spec/keystone-federation

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

• As a Deployer, in order to prevent downtime or interruption, I should be able to setup my cloud as
an Identity Provider or Service Provider with little or no interruption to the data plane.

• As a User, in order to understand the resources available to me, I should be able to retrieve a list
of Service Providers which trust my Identity Provider as well as a service catalog for the services
offered by those Service Providers.

• As an Administrator, in order to use Identity Federation between my secured network Private Cloud
and other Public Service Providers, I should be able to easily establish a trust relationship between
the two without compromising my network security.

13.5.2 Proposed change

1. Enable and configure Keystone Federation, implementing the IdP/SP configuration in a manner that
is simple for deployers and requires little or no data plane downtime. The initial SP configuration
will use saml-based authentication and Apache mod_shib. Later options to extend support to would
include the saml-based Apache mod_auth_mellon, the OpenID-based Apache mod_auth_openidc,
the kerberos-based Apache mod_auth_kerb/mod_auth_identity.

2. Improve the configuration of Keystone SSL endpoints to ensure that both the IdP and SP public
interfaces can be served via SSL using a supplied server key, server certificate, Certificate Authority
certificate and (optionally) an intermediary certificate.

3. Change the Keystone and Utility containers to use the python-openstackclient instead of the python-
keystoneclient in order to ensure that the Keystone v3 API may be used. This is required for the
administration of Federation IdP and SP configuration entities.

4. Change the Horizon configuration to allow it to consume the Keystone v3 API.

5. Automate the registration of a trusted IdP to an SP.

6. Automate the registration of a list of trusted SPs to an IdP.

7. Document and, if possible, automate the registration and mapping of external identities to specified
domains, projects, roles and users.

Alternatives

None

Playbook/Role impact

1. The os_keystone role will require changes to both tasks and templates in order to facilitate the
configuration of the IdP, SP, openstackclient and SSL.

2. The os_horizon configuration will require changes to the templates in order to facilitate the change
to use the Keystone v3 API.

3. The openstack_openrc role may need to be changed in order to place a different openrc file into
the keystone and utility containers.

4. The automation of registration and mapping of external identities to specific domains, projects,
roles and users may be done in a new playbook/role or within the existing keystone playbook/role.

266 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

5. The os_keystone role will need to include the capability to replicate the same SP signing certificates
from the first Keystone container to all the others.

Upgrade impact

Horizon will be reconfigured to use the Keystone v3 API.

Security impact

1. Keystone must have its public endpoint implemented with SSL in order to encrypt and protect
authentication and identity information which is communicated between the IdP and the SP.

2. The SP signing key and certificate must be properly secured on every server that has it.

Performance impact

TBD

End user impact

1. Administration of keystone via the v3 API will mean switching from using the keystone CLI to
using the openstack CLI.

Deployer impact

1. The deployer will be able to implement specified SSL certificates for the Keystone public endpoints.

Developer impact

1. The keystone Ansible module will be updated to make use of the keystone v3 API.

Dependencies

1. Keystone IdP requires the following: * xmlsec1: http://packages.ubuntu.com/search?keywords=
xmlsec1 * python-openstackclient: https://pypi.python.org/pypi/python-openstackclient

2. Keystone SP requires the following: * xmlsec1: http://packages.ubuntu.com/search?
keywords=xmlsec1 * libapache2-mod-shib2: http://packages.ubuntu.com/search?
keywords=libapache2-mod-shib2 * python-openstackclient: https://pypi.python.org/pypi/
python-openstackclient

3. Keystone mapping documentation: * https://review.openstack.org/192850

4. Keystone SP must use uuid tokens for now * https://bugs.launchpad.net/keystone/+bug/1471289

13.5. Keystone Federation 267

http://packages.ubuntu.com/search?keywords=xmlsec1
http://packages.ubuntu.com/search?keywords=xmlsec1
https://pypi.python.org/pypi/python-openstackclient
http://packages.ubuntu.com/search?keywords=xmlsec1
http://packages.ubuntu.com/search?keywords=xmlsec1
http://packages.ubuntu.com/search?keywords=libapache2-mod-shib2
http://packages.ubuntu.com/search?keywords=libapache2-mod-shib2
https://pypi.python.org/pypi/python-openstackclient
https://pypi.python.org/pypi/python-openstackclient
https://review.openstack.org/192850
https://bugs.launchpad.net/keystone/+bug/1471289

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.5.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~miguelgrinberg (miguelgrinberg)

Other contributors:
https://launchpad.net/~hughsaunders (hughsaunders) https://launchpad.net/~icordasc (sig-
mavirus24) https://launchpad.net/~jesse-pretorius (odyssey4me)

Work items

1. Convert existing Keystone Ansible module to use v3 API

2. Add federation commands to Keystone Ansible Module

3. Keystone public endpoint SSL configuration

4. Keystone/Utility container implementation of python-openstackclient

5. Keystone IdP software deployment, configuration and SP registration

6. Keystone SP software deployment, configuration and IdP registration

7. Document and, if possible, automate the registration and mapping of external identities to specified
domains, projects, roles and users.

13.5.4 Testing

Due to the nature of this feature requiring two independant installations there will be no specific gate
testing for it.

All changes implemented in the roles/plays as a result of this work will need to be done in such a way
that the existing gate checks continue to pass.

13.5.5 Documentation impact

1. The upgrade impact will need to be noted in the release notes.

2. The method of implementing the required user_variables for an IdP/SP will need to be described.

3. The specifics of registering and mapping external identities to domains, projects, roles and users
will need to be documented.

268 Chapter 13. Kilo Specifications

https://launchpad.net/~miguelgrinberg
https://launchpad.net/~hughsaunders
https://launchpad.net/~icordasc
https://launchpad.net/~jesse-pretorius

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.5.6 References

• http://docs.openstack.org/developer/keystone/configure_federation.html

• http://docs.openstack.org/developer/keystone/extensions/federation.html

• http://docs.openstack.org/developer/keystone/extensions/shibboleth.html

• http://blog.rodrigods.com/it-is-time-to-play-with-keystone-to-keystone-federation-in-kilo/

• https://zenodo.org/record/11982/files/CERN_openlab_Luca_Tartarini.pdf

13.6 Keystone Service Provider with ADFS Identity Provider De-
ployment

date
2015-06-22 10:00

tags
federation, scalability

This spec is to propose adding support to openstack-ansible for Keystone federation using an Active
Directory Federation Service (ADFS) Identity Provider.

Launchpad blueprint: https://blueprints.launchpad.net/openstack-ansible/+spec/keystone-sp-adfs-idp

OpenStack cloud deployers frequently utilize Microsoft Active Directory (AD) as a corporate identity
provider. In this case, provisioning user credentials specifically for their OpenStack clouds, and manag-
ing/updating the corresponding permissions for those users is burdensome. Deployers would rather use
Keystones Federation capabilities with ADFS to have AD act as an Identity Provider (IdP) to Keystone
as a Service Provider (SP).

13.6.1 Problem description

• As a User, in order to utilise my AD identity to consume resources in my OpenStack Cloud, I
should be able to authenticate to my OpenStack Cloud using my AD credentials via the Service
Providers Horizon Dashboard and Command Line Interface (CLI).

• As an Administrator, in order to maintain one identity system, I should be able to create a trust
relationship between my ADFS IdP and my OpenStack SPs.

• As an Administrator, in order to effectively map Identity Provider groups and users to Service
Provider roles, I should be able to simply define mappings to Service Provider projects, domains
and roles for given groups.

13.6. Keystone Service Provider with ADFS Identity Provider Deployment 269

http://docs.openstack.org/developer/keystone/configure_federation.html
http://docs.openstack.org/developer/keystone/extensions/federation.html
http://docs.openstack.org/developer/keystone/extensions/shibboleth.html
http://blog.rodrigods.com/it-is-time-to-play-with-keystone-to-keystone-federation-in-kilo/
https://zenodo.org/record/11982/files/CERN_openlab_Luca_Tartarini.pdf
https://blueprints.launchpad.net/openstack-ansible/+spec/keystone-sp-adfs-idp

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.6.2 Proposed change

1. Enable and configure Keystone as a federated SP with SSL public endpoints. The initial SP config-
uration will use saml-based Apache mod_shib. Later options to extend support to would include
Apache mod_auth_mellon.

2. Document the configuration of the ADFS IdP in order to support the Keystone SP.

3. Change the Horizon configuration to support Web Single-Sign-On (SSO), thereby providing sup-
port for end-users to authenticate using their AD credentials.

5. Automate the registration of the trusted ADFS IdP to the Keystone SP.

7. Document and, if possible, automate the registration and mapping of external identities to specified
domains, projects, roles and users.

Alternatives

None

Playbook impact

1. The os_horizon configuration will require changes to the templates in order to facilitate the change
to use WebSSO.

Upgrade impact

None

Security impact

There are security aspects, but they affect docs more than code:

• Security is to some extent delegated to the external IDP (AD). Therefore Deployers must be con-
fident of the security of their AD before using it for federation.

• Deployers must take time to understand the mapping mechanisms in order to ensure that only the
expected users/groups are granted access to OpenStack resources.

Performance impact

TBD

270 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

End user impact

1. If an external IdP is configured, Horizon will show multiple methods of authentication available via
a drop-down list. The user will be able to choose between credentials and the available WebSSO
sources.

Deployer impact

None

Developer impact

None

Dependencies

1. Keystone Federation Deployment Implementation: * https://blueprints.launchpad.net/
openstack-ansible/+spec/keystone-federation

2. Horizon requires the following: * django-openstack-auth v1.2.0 or higher: https://pypi.python.org/
pypi/django_openstack_auth

13.6.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~jesse-pretorius (odyssey4me)

Other contributors:
https://launchpad.net/~hughsaunders (hughsaunders) https://launchpad.net/~icordasc (sig-
mavirus24) https://launchpad.net/~miguelgrinberg (miguelgrinberg)

Work items

1. Add the required ADFS configuration to the Keystone SP. * shibboleth2.xml * attribute-map.xml

2. Document the configuration of the ADFS IdP in order to support the Keystone SP.

3. Automate the registration of the trusted ADFS IdP to the Keystone SP.

4. Change the Horizon configuration to support Web Single-Sign-On (SSO), thereby providing sup-
port for end-users to authenticate using their AD credentials.

5. Document and, if possible, automate the registration and mapping of external identities to specified
domains, projects, roles and users.

13.6. Keystone Service Provider with ADFS Identity Provider Deployment 271

https://blueprints.launchpad.net/openstack-ansible/+spec/keystone-federation
https://blueprints.launchpad.net/openstack-ansible/+spec/keystone-federation
https://pypi.python.org/pypi/django_openstack_auth
https://pypi.python.org/pypi/django_openstack_auth
https://launchpad.net/~jesse-pretorius
https://launchpad.net/~hughsaunders
https://launchpad.net/~icordasc
https://launchpad.net/~miguelgrinberg

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.6.4 Testing

Due to the nature of this feature requiring an installation of ADFS (which is not possible in OpenStack-CI)
there will be no specific gate testing for it.

All changes implemented in the roles/plays as a result of this work will need to be done in such a way
that the existing gate checks continue to pass.

13.6.5 Documentation impact

1. The preparation of the ADFS IdP to support the Keystone SP will need to be described.

2. The method of implementing the required user_variables for the Keystone SP will need to be de-
scribed.

3. The specifics of registering and mapping external identities to domains, projects, roles and users
will need to be documented.

13.6.6 References

• http://docs.openstack.org/developer/keystone/extensions/websso.html

• http://specs.openstack.org/openstack/keystone-specs/specs/kilo/websso-portal.html

• https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPADFS

• https://zenodo.org/record/11982/files/CERN_openlab_Luca_Tartarini.pdf

13.7 Master Kilofication

date
2015-03-23 13:00

tags
kilo, update,

Update the various openstack-ansible playbooks and roles in the master branch with the changes necessary
to implement a fully functional and updated kilo deployment.

• https://blueprints.launchpad.net/openstack-ansible/+spec/master-kilofication

Initial work will be based on the k3 tags in each of the openstack projects since kilo is not yet officially
released.

272 Chapter 13. Kilo Specifications

http://docs.openstack.org/developer/keystone/extensions/websso.html
http://specs.openstack.org/openstack/keystone-specs/specs/kilo/websso-portal.html
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPADFS
https://zenodo.org/record/11982/files/CERN_openlab_Luca_Tartarini.pdf
https://blueprints.launchpad.net/openstack-ansible/+spec/master-kilofication

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.7.1 Problem description

Master is setup to deploy Juno at this time we want the master branch to begin tracking Kilo.

13.7.2 Proposed change

As opposed to the minimal-kilo blueprint which is focused on making the minumum fewest possible
changes necessary to point at kilo and have a deployment that passes gating, this specification is targeted
more at updating all config files and code to bring in the kilo versions of the configs for each service,
parsing each file for differences and making informed decisions about what values to take to ensure we
have a production grade deployment system.

The approach to dealing with differences (eg changed defaults for a particular setting) will be to use the
kilo value where possible, adding an option to make any changed setting tunable if it was not already.
This gives the option to users who are upgrading from juno to be able to reset a value back to the juno
default if desired, but also means that greenfield deployments of kilo use the (hopefully better) kilo value.

Examples of configs impacted (these will differ depending on the service being worked on):

/etc/<servicename>/<servicename>.conf
/etc/<servicename>/<servicename>-api-paste.ini
/etc/<servicename>/policy.json
/etc/<servicename>/<servicename>-<agentname>.ini

Alternatives

We could, wherever needed, preserve juno settings rather than taking forward the kilo settings. This is
potentially easier on users in an upgrade scenario, but does mean that new users deploying kilo would get
an already out of date deployment. It also means that we miss an opportunity to implement best practices
deployments, instead sticking on old, less relevant, values.

Playbook impact

There will be no impact on the playbooks. These changes are on the dependency and role level which
only impact the configuration files and role options.

Upgrade impact

This change will impact upgrades, but upgrades are out of scope for this spec which will be addressed
separately. Largely it addresses greenfield deployments of kilo.

13.7. Master Kilofication 273

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Security impact

These changes will initially be based on BETA code (k3 and rc1 tags of kilo) which may have conse-
quences regarding security, but work will be done to test against production kilo when it is released (and
prior to the 11.0.0 release of openstack-ansible being tagged)

Performance impact

Because the Kilo code base is not tested and released, the performance of the stack will not be in scope
at this time. As future work develops to finalize the roles used in Kilo, work will be done on a per role
basis to ensure performance.

End user impact

N/A

Deployer impact

As stated previously, this change will initially introduce new BETA code. Deployers shouldnt be using
master at this time.

Developer impact

This change is to allow development of a production grade kilo deployment

Dependencies

The spec will introduce a number of new dependencies. At this time not all are exactly known. However,
we can safely say that all new clients will be used throughout the stack as well as various middlewares.

13.7.3 Implementation

Assignee(s)

Various

Work items

Unknown at this time

274 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.7.4 Testing

No changes to the current testing and or gating framework will be made. Each change that is made to
a service to bring forward new configs and settings will be required to pass the same gate tests as are
required by our production systems.

13.7.5 Documentation impact

This change will likely have documentation impact. Specifically when documenting changed values or
deprecated config items.

13.7.6 References

N/A

13.8 Minimal Kilo

date
2015-03-17 21:34

tags
kilo, minimum, update,

Update master to point to the minimum configuration nessisary for a functional kilo stack.

• https://blueprints.launchpad.net/openstack-ansible/+spec/minimal-kilo

This spec is being created to track the work required to get a minimum viable deployment of kilo. Because
the Kilo release of OpenStack has not yet been released the work done within this blueprint will pull from
the head of master and stabilize on the a given sha for the time being.

13.8.1 Problem description

Master is setup to deploy Juno at this time we want the master branch to begin tracking Kilo.

13.8.2 Proposed change

In order to have a minimally functional Kilo stack there are several issues that need to be resolved which
have been raised within Launchpad. Once the following issues are resolved Kilo should be a functional
deployment from the stand point of gating. The point of this Spec is to introduce the least amount of
changes into the stack in an effort to enable a Kilo code base. The changes should pass gating from the a
commit basis. Once this spec is complete other work can follow to make Kilo a production ready product.

13.8. Minimal Kilo 275

https://blueprints.launchpad.net/openstack-ansible/+spec/minimal-kilo

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Alternatives

There are no alternatives to this approach. Without a bulk commit to address the minimal changes to get
Kilo functional we will not be able to move forward with development.

Playbook impact

There will be no impact on the playbooks. These changes are on the dependency and role level which
only impact the configuration files and role options.

Upgrade impact

This change will impact upgrades. The change will introduce new code which will allow the system to
upgrade inplace. That said, this is a transitional spec which will translate into future work to make Kilo a
production ready product. Upgrades are out of the scope of this spec and it is expected that Juno to Kilo
upgrades will be broken at this point.

Security impact

These changes will introduce BETA code which will likely have consequences regarding security however
the changes are not geared at production at this time and will be revised in a fast follow effort.

Performance impact

Because the Kilo code base is not tested and released the performance of the stack will not be in scope
at this time. As future work develops to finalize the roles used in Kilo work will be done on a per role
basis to ensure performance.

End user impact

N/A

Deployer impact

As stated previously, this change will introduce new BETA code. Deployers shouldnt be using master at
this time.

Developer impact

This change is geared at enabling developers to begin working on Kilo.

276 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Dependencies

The spec will introduce a number of new dependencies. At this time not all are exactly known. However,
we can safely say that all new clients will be used throughout the stack as well as various middlewares.

13.8.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~kevin-carter

Other contributors:
https://launchpad.net/~nolan-brubaker

IRC: cloudnull, palendae

Work items

In order to have a minimum viable installation of OpenStack Kilo the following issues will need to be
addressed.

• #1428421 Keystone.py needs to be updated for kilo

• #1428431 OpenStack Clients need to be updated for Kilo

• #1428437 Update/Removal of pinned Oslo Messaging and Middleware for kilo

• #1428445 Neutron needs plugin references removed for kilo

• #1428451 Heat policy.json file needs to be updated for Kilo

• #1428469 Neutron rootwarp(s) need to be updated for Kilo

• #1428639 Nova requires python-libguestfs in Kilo

13.8.4 Testing

No changes to the current testing and or gating framework will be made. The minimum viable Kilo
deployment will be required to pass the same gate tests as are required by our production systems.

13.8.5 Documentation impact

This change specifically does not have any documentation impact.

13.8. Minimal Kilo 277

https://launchpad.net/~kevin-carter
https://launchpad.net/~nolan-brubaker
https://bugs.launchpad.net/openstack-ansible/+bug/1428421
https://bugs.launchpad.net/openstack-ansible/+bug/1428431
https://bugs.launchpad.net/openstack-ansible/+bug/1428437
https://bugs.launchpad.net/openstack-ansible/+bug/1428445
https://bugs.launchpad.net/openstack-ansible/+bug/1428451
https://bugs.launchpad.net/openstack-ansible/+bug/1428469
https://bugs.launchpad.net/openstack-ansible/+bug/1428639

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.8.6 References

N/A

13.9 Modularizing Neutron plays for agents and non ml2 plugin
support

date
2015-03-30 16:35

tags
neutron, plugins, agents

This spec is propsed to enhance the current neutron playbooks that take a static approach to plugin and
agent insertion. Where ml2 and a few agents are used by default.

• https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-plays

13.9.1 Problem Description

Presently a straightforward approach does not exist to add new plugins and add / remove agents to the
neutron setup. A deployer either has to perform these changes after the whole setup is complete or make
his own changes in the playbooks.

13.9.2 Proposed Change

This feature is proposed for both master and juno branches, the juno effort will be carried out first:

1. For juno, the openstack/roles/neutron_common.yml will be modified to install a configurable list
of plugins and agents through new variables defined in inventory/group_vars/neutron_all. The default
values to these new variables with be the current set of installed agents and plugins.

2. For master, the playbooks/roles/os_neutron/tasks files will be modified, particu-
larly neutron_post_install.yml. Addition of new parameters will be made to play-
books/roles/os_neutron/defaults/main.yml

Playbook Impact

1. In juno, the following files are expected to be modified:

• openstack/roles/neutron_common.yml

• openstack/inventory/group_vars/neutron_all.yml

2. In master, these files will be modified:

• playbooks/roles/os_neutron/tasks/neutron_post_install.yml

• playbooks/roles/os_neutron/defaults/main.yml

278 Chapter 13. Kilo Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/modularize-neutron-plays

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Upgrade Impact

None

Alternatives

Using the current architecture, prospective new plugins which are not ml2 will have to take an overwriting
the default configuration, after its done, approach to insert their own changes.

Security Impact

None known at this time.

Performance Impact

This change is not expected to impact performance. Installing the default set of agents and plugins as
done now, will take the same amount of effort.

End User Impact

This is not expected to impact end users as it deals with the deployment aspect only.

Deployer Impact

This will introduce a more modular architecture for deployers to select neutron plugins/agents from,
allowing a wider use case for these playbooks.

Developer Impact

Using the default values will require no new developer effort, only those interested in changing the neutron
config will be effected.

Dependencies

N/A

13.9.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~javeria-ak

13.9. Modularizing Neutron plays for agents and non ml2 plugin support 279

https://launchpad.net/~javeria-ak

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Work items

This change will include modifying the existing neutron_common role to pick up what plugin to install
along with what agents. The names and configs for individual plugins will be created as new variables
in inventory/group_vars/neutron_all.yml

Dependencies

N/A

13.9.4 Testing

There are no additional changes required to test this in the current testing and or gating framework.

13.9.5 Documentation Impact

A bit of additional documentation describing how to insert new plugins/agents will be required. This
will be deployer documentation.

13.9.6 References

N/A

13.10 Multi-Region Swift

date
2015-07-03 13:00

tags
kilo, swift

This blueprint was created to add Multi-Region Swift support to OSAD. It will lay out a series of use
cases to define the requirements of Multi-Region Swift within OSAD.

• https://blueprints.launchpad.net/openstack-ansible/+spec/multi-region-swift

A Swift cluster can be deployed in such a way that the cluster spans multiple geographically dispersed
data centers. This allows an end-user to ensure resiliency in the event of a data center failure, with one
or more copies of an object stored in each data center location. This facilitates end-users being able to
build out geographically dispersed infrastructure, enabling high availability.

280 Chapter 13. Kilo Specifications

https://blueprints.launchpad.net/openstack-ansible/+spec/multi-region-swift

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.10.1 Problem description

• As a User I want to be able to store or retrieve objects in any location of a multi-location object
storage solution, using the same credentials.

• As a User, I want my default object storage/retrieval location to be as close to my location as
possible - by specifying the closest endpoint and having that endpoint access the closest storage
locations.

• As an Administrator, I want to be able to set a global storage policy that enables me to specify the
number of copies of every object to be stored in each location of the multi-location object storage
based on one of the following predefined scenarios:

– With 3 or more storage deployments, each location is considered to be as important as any
other location. The same number of copies should be kept in each location.

– With 3 storage deployments we consider 1 to be the primary and the other 2 as geographically
convenient locations for read purposes. There should be 2 copies in the primary location and
1 in each of the other locations.

– With 2 storage deployments, we consider 1 to be the primary location and the other a backup
location. There should be 2 copies in the primary location and 1 copy in the backup location.

• As a User, I want to be assured durability of my content under various circumstances, such as:

– Initial upload to single location. i.e. in the case of uploading an object to location A in a 3
location solution where the global policy is 1 locally, 1 in each remote - until the 2 remote
objects are confirmed, the local object storage cluster will have 3 copies.

– Failure of 1 or more locations. i.e. In a 3 location solution where the global policy is 1 locally,
1 in each remote - if location A fails, either location B or C will generate a second copy of
the missing objects to ensure that there are always 3 copies.

• As an Administrator, I want to be able to override the global storage policy at a container level in
order to increase or reduce replication. For example:

– One or more containers can have an alternate policy specified at the container level that over-
rides the global policy. If the global policy in a 3 location solution is 1 locally and 1 in each
remote, one or more container can be configured to a 3 locally policy.

• As a User, where the global storage policy has been configured to replicate objects across locations,
I want to be able to retrieve my objects from an alternate location in the event of a failure of my
default location.

• As an Administrator, I want to be assured that when replicating data from the primary location to
the remote locations the data is secured and not transmitted in the clear.

13.10.2 Proposed change

1. Enable the use of the read_affinity, write_affinity and write_affinity_node_count settings within
Swift on a swift-proxy host basis. This will allow the prioritization of reads/writes based on region.

2. Enable some form of encryption to ensure the replication of objects across locations is secure.

3. Configure the management of the ring and keys required for communication between swift storage
hosts across multiple locations and deployments.

13.10. Multi-Region Swift 281

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

4. Document the use of the read_affinity, write_affinity and write_affinity_node_count settings within
openstack-ansible and provide guidance around how to implement the specified Use Cases.

5. Document the process of setting up a global swift cluster within openstack-ansible.

6. Adjust settings to allow the use of keystone v3 API for swift, in the swift configuration files.

Alternatives

We could not enable swift multi-region support.

Playbook impact

Whilst the Multi-Region component will be optional, we will need to implement the following changes
without adjusting how the current default operates:

1. The Multi-Region component will require adjustments to ring/key management for swift hosts,
as well as some changes to how the Swift inventory is managed within the user_config.yml (or
conf.d/swift.yml) files.

2. Read_affinity, write_affinity and write_affinity_node_count will need to be added configuration
for proxy-servers.

3. The synchronization of the swift-ring will needed to be handled across nodes in all loca-
tions/regions.

Upgrade impact

This should have no upgrade impact.

Security impact

Since swift does not handle encryption of objects this will need to be handled externally to swift.

Performance impact

N/A

End user impact

The user will now have the option to configure a Multi-Region Swift cluster. The default will remain the
same, so it should not impact any users who do not wish to utilise a Multi-Region Swift cluster.

282 Chapter 13. Kilo Specifications

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

Deployer impact

A deployer will be able to adjust the inventory across multiple deploys to ensure a global swift cluster
operating unformly for all deploys.

Developer impact

None

Dependencies

None known

13.10.3 Implementation

Assignee(s)

Primary assignee:
https://launchpad.net/~andrew-mccrae (andymccr)

Other contributors:
https://launchpad.net/~steve-lewis (stevelle) https://launchpad.net/~tom-cameron (rackertom)
https://launchpad.net/~apsu-2 (Apsu) https://launchpad.net/~prometheanfire (prometheanfire)

Work items

1. Enable the use of the read_affinity, write_affinity and write_affinity_node_count settings within
Swift on a swift-proxy host basis. This will allow the prioritization of reads/writes based on region.

2. Enable some form of encryption to ensure the replication of objects across locations is secure.

3. Configure the management of the ring and keys required for communication between swift storage
hosts across multiple locations and deployments.

4. Document the use of the read_affinity, write_affinity and write_affinity_node_count settings within
openstack-ansible and provide guidance around how to implement the specified Use Cases.

5. Document the process of setting up a global swift cluster within openstack-ansible.

6. Adjust settings to allow the use of keystone v3 API.

13.10.4 Testing

As this will require two independent installations of swift we wont add anything specific to the gate to
automatically test this. However the changes should not adjust how current tests work and all changes
will need to ensure that existing tests continue to pass.

13.10. Multi-Region Swift 283

https://launchpad.net/~andrew-mccrae
https://launchpad.net/~steve-lewis
https://launchpad.net/~tom-cameron
https://launchpad.net/~apsu-2
https://launchpad.net/~prometheanfire

OpenStack-Ansible Documentation: specs role, Release 0.0.1.dev220

13.10.5 Documentation impact

1. Use case implementation will need to be documented

2. Implementation of a global cluster and the settings required.

3. New network requirements will need to be documented.

4. Inventory management, and configuration options that are added as a result will need to be docu-
mented.

13.10.6 References

• http://docs.openstack.org/developer/swift/admin_guide.html#geographically-distributed-clusters

• https://swiftstack.com/blog/2012/09/16/globally-distributed-openstack-swift-cluster/

• search

284 Chapter 13. Kilo Specifications

http://docs.openstack.org/developer/swift/admin_guide.html#geographically-distributed-clusters
https://swiftstack.com/blog/2012/09/16/globally-distributed-openstack-swift-cluster/

	Spec Templates
	Example Spec - Title of your spec
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Antelope Specifications
	Separated Haproxy Service Config
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items
	Changes Hierarchy

	Testing
	Documentation impact
	References

	Zed Specifications
	Enabling TLS on Internal Communications
	Problem description
	Securing internal communications to the internal haproxy VIP
	Securing internal communications from haproxy to backends
	Securing internal communications between services

	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Xena Specifications
	Protecting OpenStack Plaintext Secrets Automation
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Wallaby Specifications
	SSL Root Certificate Authority
	Problem description
	Proposed change
	Implementation

	Roles/service impact
	For all hosts/containers
	For HAproxy
	For Galera (or other infrastructure service)
	For service components such as Nova and Octavia which can use TLS
	To replace ssh keys
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Rocky Specifications
	Use nginx as centralized reverse proxy for API services
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Integration of Masakari with OpenStack-Ansible
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Install OpenStack services from distribution packages
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Refactoring OSA inventory
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Queens Specifications
	Generalize Infrastructure Roles
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Integration of Blazar with OpenStack-Ansible
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Integration of Congress with OpenStack Ansible
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Implement deployment stages for optimised execution
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Documentation improvements
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	ELK Stack
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Provide option of hybrid messaging backends
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Hyper-Converge Containers
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	OpenDaylight with BGPVPN support in Neutron
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Python Build/Install Process Simplification
	Problem description
	Building
	Storing
	Installing

	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Pike Specifications
	Use dnf with CentOS
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Pluggable Inventory Backends
	Problem description
	Proposed change
	Plugin Python API
	Configuration Changes
	Alternatives
	Configuration Alternatives
	Plugin Implementation Alternatives

	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Monitoring for an OpenStack-Ansible deployment
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Integration of OpenDaylight SDN controller with Neutron
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Openvswitch with NSH support in Neutron
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Replace IP Generation Code
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Ocata Specifications
	Create Operations Guide
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Octavia
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Newton Specifications
	Add support for SystemD
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Gate Split
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IPv6 Project Support
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Monasca High Availability & Monasca-Agent Role
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Multiple CPU Architecture Support
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Only support venv installs
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Overhaul of the current OpenStack-Ansible Installation Guide
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Support PowerVM Virt Driver
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Additional Role for Gnocchi Deployment
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Additional Role for Tacker Service Deployment
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Apply RHEL 7 STIG hardening standard
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	standalone-swift
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Add support for multiple RabbitMQ clusters
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Support Xen Virt Driver
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Mitaka Specifications
	Build Facts Archive
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Convert AIO bootstrap to Ansible
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Independent Role Repositories
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Installation Guide
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - APT package Pinning
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - Galera
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - LXC Container Create
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - LXC Host
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - Memcached Server
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - OpenStack Hosts
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - pip install
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - pip_lock_down
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - RabbitMQ server
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - Repo Server
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - rsyslog client
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - rsyslog_server
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	IRR - Utility
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Load Balancers v2 (LBaaSv2 & octavia)
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Limit Mysql Config Distribution
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Modularize configuration files
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Policy Files Distribution to Horizon
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Additional Role for Designate Deployment
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Role Ironic
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Additional Role for Zaqar Deployment
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Security Hardening for Hosts
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Liberty Specifications
	Compartmentalize RabbitMQ
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Allow os_* services to use a venv
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Liberty Release
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Modularizing Neutron plays for agents and non ml2 plugin support
	Problem Description
	Proposed Change
	Playbook Impact
	Upgrade Impact
	Alternatives
	Security Impact
	Performance Impact
	End User Impact
	Deployer Impact
	Developer Impact
	Dependencies

	Implementation
	Assignee(s)
	Work items
	Dependencies

	Testing
	Documentation Impact
	References

	Named veths
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Add PLUMgrid plugin to neutron playbooks
	Problem Description
	Proposed Change
	Playbook Impact
	Upgrade impact
	Alternatives
	Security Impact
	Performance Impact
	End User Impact
	Deployer Impact
	Developer Impact
	Dependencies

	Implementation
	Assignee(s)
	Work items
	Dependencies

	Testing
	Documentation Impact
	References

	Remove upstream repo dependency
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	HAProxy improvements
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Tunable OpenStack Configuration
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	MariaDB upgrade to v10
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Kilo Specifications
	Add PLUMgrid plugin to neutron playbooks
	Problem Description
	Proposed Change
	Playbook Impact
	Upgrade impact
	Alternatives
	Security Impact
	Performance Impact
	End User Impact
	Deployer Impact
	Developer Impact
	Dependencies

	Implementation
	Assignee(s)
	Work items
	Dependencies

	Testing
	Documentation Impact
	References

	Ceph Block Devices
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	openstack-ansible overview documentation
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Implement Ceilometer
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Primary Assignee(s)
	Other contributors:
	Work items

	Testing
	Documentation impact
	References

	Keystone Federation
	Problem description
	Proposed change
	Alternatives
	Playbook/Role impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Keystone Service Provider with ADFS Identity Provider Deployment
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Master Kilofication
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Minimal Kilo
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

	Modularizing Neutron plays for agents and non ml2 plugin support
	Problem Description
	Proposed Change
	Playbook Impact
	Upgrade Impact
	Alternatives
	Security Impact
	Performance Impact
	End User Impact
	Deployer Impact
	Developer Impact
	Dependencies

	Implementation
	Assignee(s)
	Work items
	Dependencies

	Testing
	Documentation Impact
	References

	Multi-Region Swift
	Problem description
	Proposed change
	Alternatives
	Playbook impact
	Upgrade impact
	Security impact
	Performance impact
	End user impact
	Deployer impact
	Developer impact
	Dependencies

	Implementation
	Assignee(s)
	Work items

	Testing
	Documentation impact
	References

